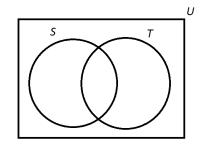
Set Theory: Laws and Proofs

Ian Ludden

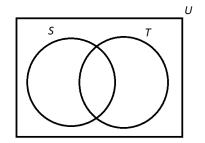
By the end of this lesson, you will be able to:

By the end of this lesson, you will be able to:

• Remember fundamental laws/rules of set theory.

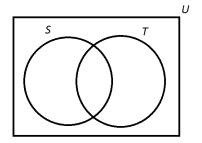

By the end of this lesson, you will be able to:

- Remember fundamental laws/rules of set theory.
- Apply definitions and laws to set theoretic proofs.

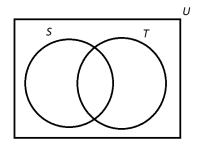

• Commutative, associative

- Commutative, associative
- Distributive

- Commutative, associative
- Distributive
- Double complement



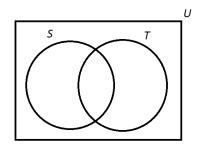
- Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:



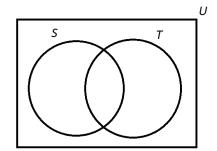
- · Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:

•
$$\overline{S \cap T} = \overline{S} \cup \overline{T}$$

- Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:
 - $\overline{S \cap T} = \overline{S} \cup \overline{T}$
 - $\overline{S \cup T} = \overline{S} \cap \overline{T}$



- · Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:


•
$$\overline{S \cap T} = \overline{S} \cup \overline{T}$$

•
$$\overline{S \cup T} = \overline{S} \cap \overline{T}$$

• And many more...

Cardinality after Set Operations

Size of set union

Cardinality after Set Operations

- Size of set union
- Size of Cartesian product (*product rule*)

Menu			
	Appetizer	Entree	Dessert
·)	Wings	Pizza	Gelato
	Mozz. sticks	Pasta	Rhubarb Pie
	Onion rings	Steak	Choc. cake
	Salad	Chicken	Cheesecake
	Calamari		Cookie
	Soup		

• $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \square

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \square

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \square

Example

Define $A = \{a \in \mathbb{Z} : a^2 - 9 \text{ is odd and } |a| < 25\}$ and $B = \{b \in \mathbb{Z} : b \text{ is even}\}$. Prove $A \subseteq B$.

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \square

Example

Define
$$A = \{a \in \mathbb{Z} : a^2 - 9 \text{ is odd and } |a| < 25\}$$
 and $B = \{b \in \mathbb{Z} : b \text{ is even}\}$. Prove $A \subseteq B$.

To prove set equality, show inclusion in both directions

Another Set Proof

Let $A, B, C \subseteq U$. Prove that $(A - B) \subseteq C$ if and only if $(A - C) \subseteq B$.

By the end of this lesson, you will be able to:

- Remember fundamental laws/rules of set theory.
- Apply definitions and laws to set theoretic proofs.

Summary of set theory laws:

https://en.wikipedia.org/wiki/Algebra_of_sets