Introduction to Set Theory

lan Ludden

Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

By the end of this lesson, you will be able to:

Recall basic set theoretic definitions and notation.

Learning Objectives

By the end of this lesson, you will be able to:

- Recall basic set theoretic definitions and notation.
- Compute basic operations on concrete sets.

Definition

A **set** is an unordered collection of objects.

Definition

A **set** is an unordered collection of objects.

Examples

ullet $\mathbb Z$

Definition

A **set** is an unordered collection of objects.

- \mathbb{Z}
- {apple, banana, orange}

Definition

A **set** is an unordered collection of objects.

- \mathbb{Z}
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$

Definition

A **set** is an unordered collection of objects.

- \mathbb{Z}
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$
- $\{\} = \emptyset$

Definition

A **set** is an unordered collection of objects.

- Z
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$
- $\bullet \ \{\} = \emptyset$
- The equivalence class of 4 mod 7:

Definition

A **set** is an unordered collection of objects.

- Z
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$
- $\{\} = \emptyset$
- The equivalence class of 4 mod 7:
 - $\{\ldots, -10, -3, 4, 11, 18, \ldots\}$

Definition

A **set** is an unordered collection of objects.

- \mathbb{Z}
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$
- $\{\} = \emptyset$
- The equivalence class of 4 mod 7:
 - $\{\ldots, -10, -3, 4, 11, 18, \ldots\}$
 - $\{m \in \mathbb{Z} : m \equiv 4 \pmod{7}\}$

Definition

A **set** is an unordered collection of objects.

- \mathbb{Z}
- {apple, banana, orange}
- $\{a \in \mathbb{N} \mid a \leq 10\}$
- $\{\} = \emptyset$
- The equivalence class of 4 mod 7:
 - $\{\ldots, -10, -3, 4, 11, 18, \ldots\}$
 - $\{m \in \mathbb{Z} : m \equiv 4 \pmod{7}\}$
 - $\{m \in \mathbb{Z} : 7 \mid (m-4)\}$

Cardinality and Inclusion

Definition

The *cardinality* of a set S, denoted |S|, is the number of distinct objects it contains.

Cardinality and Inclusion

Definition

The *cardinality* of a set S, denoted |S|, is the number of distinct objects it contains.

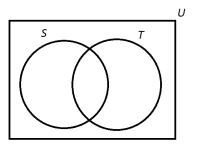
Definition

Given sets S and T, we call S a **subset** of T (denoted $S \subseteq T$) if every element in S is also an element of T. We call S a **proper** subset of T (denoted $S \subset T$) if T has at least one element that S doesn't.

Let *S* and *T* be sets in universe *U*.

• Intersection:

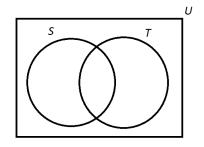
$$S \cap T := \{s : s \in S \land s \in T\}$$



Let *S* and *T* be sets in universe *U*.

- Intersection: $S \cap T := \{s : s \in S \land s \in T\}$
- Union:

$$S \cup T := \{s : s \in S \lor s \in T\}$$



Let *S* and *T* be sets in universe *U*.

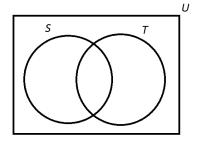
- Intersection:
 - $S \cap T := \{s : s \in S \land s \in T\}$
- Union:

$$S \cup T := \{s : s \in S \lor s \in T\}$$

• Difference:

$$S \setminus T := S - T :=$$

 $\{s \in S : s \notin T\}$



Let *S* and *T* be sets in universe *U*.

Intersection:

$$S \cap T := \{s : s \in S \land s \in T\}$$

• Union:

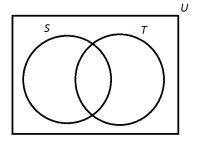
$$S \cup T := \{s : s \in S \lor s \in T\}$$

• Difference:

$$S \setminus T := S - T := \{s \in S : s \notin T\}$$

• Complement:

$$\overline{S} := \{ s \in U : s \notin S \}$$



Let *S* and *T* be sets in universe *U*.

- Intersection:
 - $S \cap T := \{s : s \in S \land s \in T\}$
- Union:

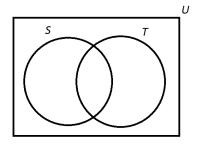
$$S \cup T := \{s : s \in S \lor s \in T\}$$

• Difference:

$$S \setminus T := S - T := \{s \in S : s \notin T\}$$

- Complement:
- Cartesian product:

$$S \times T := \{(s,t) : s \in S \land t \in T\}$$



Computing Set Operations

```
U := \mathbb{Z}

A := \{a \in \mathbb{Z} : a \ge 4 \text{ or } a < 0\}

B := \{b \in \mathbb{Z} : b \text{ is odd and } |b| < 6\}
```

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Recall basic set theoretic definitions and notation.
- Compute basic operations on concrete sets.