Combinatorial Proofs

lan Ludden

Ian Ludden Combinatorial Proofs

Ξ

• Prove combinatorial identities by counting the same quantity in two ways.

(4 回 ト 4 ヨ ト 4 ヨ ト

• Prove combinatorial identities by counting the same quantity in two ways.

NOTE: This is a special topic and will not be tested on any examlets.

< 回 > < 三 > < 三 >

What is a combinatorial proof?

Ian Ludden Combinatorial Proofs

Ξ

What is a combinatorial proof?

Definition

A *combinatorial proof* is any argument that relies on counting.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A **combinatorial proof** is any argument that relies on counting.

Definition

A *combinatorial proof* is any argument that relies on counting.

We've seen this before...

For all $n, k \in \mathbb{N}$, prove

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

General strategy to prove A = B:

- 1 Invent a counting problem you can solve in two ways.
- 2 Show that one answer to the counting problem is *A*.
- **3** Show that another answer is *B*.

BYO Word Problem

Ian Ludden Combinatorial Proofs

E

<ロト < 回 > < 回 > < 回 > .

BYO Word Problem

Sum of binomial coefficients

Prove:

Hove:

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^{n}$$
Know: 2^{n} is $|P(s)|$ when $|s|=n$.
LHS: condition on size of the subset.
H subset of S of size k: $\binom{h}{k}$
Possible sizes are $k=0, 1, 2, \dots, n$
So LHS counts $|P(s)|$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BYO Word Problem

Sum of binomial coefficients

Prove:

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

More Examples

lan Ludden Combinatorial Proofs

1

More Examples

$$\binom{n}{k} = \binom{n}{n-k} \cdot \binom{n}{k} \binom{n}{n} + \binom{n}{n} \binom{n}{n-1} + \dots + \binom{n}{k} \binom{n}{k}$$
Sum of squares of binomial coefficients
Prove: $\binom{n}{k} \binom{n}{k} + \binom{n}{1} \binom{n}{1} + \dots + \binom{n}{n} \binom{n}{2} = \binom{2n}{n}$
 $\binom{n}{0}^{2} + \binom{n}{1}^{2} + \binom{n}{2}^{2} + \dots + \binom{n}{n}^{2} = \binom{2n}{n}$
RHS: Choose n from set of size 2n.
Prof. Swope has n student from Hilf. and n student from
Rav. in his potions class. How many ways can be pick
n students to do the lab?
 $(n) \in \binom{n}{k} \cdot \binom{n}{n-k} \in \binom{n}{k}$
 $(n) \in \binom{n}{k} \cdot \binom{n}{k} + \binom{n}{n-k}$
 $(n) \in \binom{n}{k} + \binom{n}{n-k} + \binom{n}{k} + \binom{n}{n-k} + \binom{n}{k} + \binom{n}{k-1} + \binom{n}{$

More Examples

Sum of *squares* of binomial coefficients

Prove:

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

Summations are Your Friends

Ian Ludden Combinatorial Proofs

Ξ

<ロト < 回 > < 回 > < 回 > .

Summations are Your Friends

What is the summation variable?

Prove:

1

$$\sum_{r=0}^{n} \binom{n}{r} \binom{2n}{n-r} = \binom{3n}{n}$$

RHS: obvious.
LHS: r is # of chac. pieces we pick.

$$\binom{n}{r}$$
 ways to pick t choc.
 $\binom{2n}{n-r}$ ways to pick n-r hon-choc.
 $r = 0, 1, -r, n$.

Summations are Your Friends

What is the summation variable?

Prove:

$$\sum_{r=0}^{n} \binom{n}{r} \binom{2n}{n-r} = \binom{3n}{n}.$$

What is the summation variable? What is k? One less than more picked. $\sum_{k=0}^{n} \binom{k}{r} = \binom{n+1}{r+1} \cdot \frac{1}{r+1} \cdot \frac$ PIIPZ, P3, ..., (Pr+1). Assume sorted. Condition on max number chosen. If max=n: (n-1) If max=1, then impossible. If mox=n: (r) If max=+1, then (r) ward. mox=ktl. (k)

• Prove combinatorial identities by counting the same quantity in two ways.

NOTE: This is a special topic and will not be tested on any examlets.

< 17 × <