Countability

Part a: Extending Cardinality

Ian Ludden

By the end of this lesson, you will be able to:

 Formally define what it means for two sets to have the same cardinality.

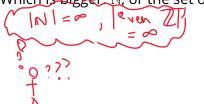
- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.

- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.
- Connect cardinality relationships to the existence of one-to-one functions.

Our definition of cardinality from Chapter 5: Given a set A, |A| is the number of different objects in A.

Our definition of cardinality from Chapter 5: Given a set A, |A| is the number of different objects in A.

Which is bigger: N, or the set of all even integers?



N & ever 2

even Z & N

Our definition of cardinality from Chapter 5: Given a set A, |A| is the number of different objects in A.

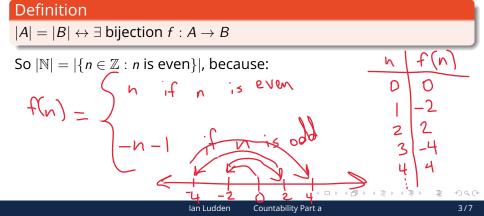
Which is bigger: \mathbb{N} , or the set of all even integers?

Definition

 $|A| = |B| \leftrightarrow \exists$ bijection $f : A \rightarrow B$

Our definition of cardinality from Chapter 5: Given a set A, |A| is the number of different objects in A.

Which is bigger: \mathbb{N} , or the set of all even integers?



Proving Cardinality by Constructing Bijections

Example 1: Prove $|\mathbb{N}| = |\{\text{powers of two}\}|$

Define $T = \{n \in \mathbb{Z} : n \ge 1 \text{ and } n \text{ is a power of two}\}$. Prove $|\mathbb{N}| = |T|$.

$$q(n) = 2^{h}$$
.

Proving Cardinality by Constructing Bijections

Example 1: Prove $|\mathbb{N}| = |\{\text{powers of two}\}|$

Define $T = \{n \in \mathbb{Z} : n \ge 1 \text{ and } n \text{ is a power of two}\}$. Prove $|\mathbb{N}| = |T|$.

10/11/00/

Example 2: Prove $|\mathbb{Z}^+| = |\{\text{bit strings with no leading zeros}\}|$

Define $S = \{ \text{bit strings with no leading zeros} \}$. Prove $|\mathbb{Z}^+| = |S|$.

$$b(n) = binary representation of n$$

 $b(1) = 1$, $b(2) = 10$, $b(14) = 1110$, ...

lan Ludden

Definition

 $|A| \le |B| \leftrightarrow \exists$ one-to-one $f: A \to B$

Definition

 $|A| \le |B| \leftrightarrow \exists$ one-to-one $f: A \to B$

Remember proving A = B by proving $A \subseteq B$ and $B \subseteq A$? Or f(n) is $\Theta(g(n))$ by proving f(n) is O(g(n)) and g(n) is O(f(n))?

Definition

$$|A| \leq |B| \leftrightarrow \exists$$
 one-to-one $f: A \rightarrow B$

Remember proving A = B by proving $A \subseteq B$ and $B \subseteq A$? Or f(n) is $\Theta(g(n))$ by proving f(n) is O(g(n)) and g(n) is O(f(n))?

Theorem (Cantor-Schroeder-Bernstein)

Given sets A and B, if there exist one-to-one functions $f: A \to B$ and $g: B \to A$, then there exists a bijection $h: A \to B$.

$$(|A| \leq |B| \land |B| \leq |A| \rightarrow |A| = |B|)$$

• Gives two-way bounding approach for proving |A| = |B|

Applying the Cantor-Schroeder-Bernstein Theorem

Example 3: Prove $|\mathbb{N}^2| = |\mathbb{N}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove $|\mathbb{N}^2| = |\mathbb{N}|$.

$$\alpha : \mathbb{N}^2 \to \mathbb{N}$$

 $\alpha(n,m) = 2^n 3^m$
 $\alpha(0,0) = 1, \alpha(4,1) = 48,...$

$$\beta(n) = (n, 0)$$

$$|\mathcal{N}_{5}| \leq |\mathcal{N}|$$

$$|\mathcal{N}_{5}| = |\mathcal{N}| \cdot |\mathcal{D}|$$

lan Ludden Countability Part a

Applying the Cantor-Schroeder-Bernstein Theorem

Example 3: Prove $|\mathbb{N}^2| = |\mathbb{N}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove $|\mathbb{N}^2| = |\mathbb{N}|$. 11/1= 15 bours Mongret

$$a \Rightarrow 01$$
 $b \Rightarrow 02$

Z -> 26

Example 4: Prove $|\mathbb{N}| \neq |\{\text{passwords of lowercase letters}\}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove

$$|\mathbb{N}| = |\{\text{passwords of lowercase letters}\}|.$$

Recap: Learning Objectives

- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.
- Connect cardinality relationships to the existence of one-to-one functions.