Countability Part a: Extending Cardinality

lan Ludden

lan Ludden Countability Part a

Ξ

<ロト < 団ト < 団ト < 団ト

<ロト < 団ト < 団ト < 団ト

• Formally define what it means for two sets to have the same cardinality.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.

- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.
- Connect cardinality relationships to the existence of one-to-one functions.

lan Ludden Countability Part a

Ξ

ヘロト 人間 ト 人 ヨト 人 ヨト

Our definition of cardinality from Chapter 5: *Given a set A,* |*A*| *is the number of different objects in A.*

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Our definition of cardinality from Chapter 5: *Given a set A,* |*A*| *is the number of different objects in A.*Which is bigger: N, or the set of all even integers?

(4 回 ト 4 ヨ ト 4 ヨ ト

Our definition of cardinality from Chapter 5:*Given a set A,* |*A*| *is the number of different objects in A.*Which is bigger: N, or the set of all even integers?

Definition $|A| = |B| \leftrightarrow \exists$ bijection $f : A \rightarrow B$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Our definition of cardinality from Chapter 5: *Given a set A,* |A| *is the number of different objects in A.*Which is bigger: N, or the set of all even integers?

Definition

 $|A| = |B| \leftrightarrow \exists$ bijection $f : A \rightarrow B$

So $|\mathbb{N}| = |\{n \in \mathbb{Z} : n \text{ is even}\}|$, because:

- 4 同 ト 4 三 ト 4 三 ト

Proving Cardinality by Constructing Bijections

Example 1: Prove $|\mathbb{N}| = |\{\text{powers of two}\}|$

Define $T = \{n \in \mathbb{Z} : n \ge 1 \text{ and } n \text{ is a power of two} \}$. Prove $|\mathbb{N}| = |T|$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Proving Cardinality by Constructing Bijections

Example 1: Prove $|\mathbb{N}| = |\{\text{powers of two}\}|$

Define $T = \{n \in \mathbb{Z} : n \ge 1 \text{ and } n \text{ is a power of two}\}$. Prove $|\mathbb{N}| = |T|$.

Example 2: Prove $|\mathbb{Z}^+| = |\{\text{bit strings with no leading zeros}\}|$

Define $S = \{$ bit strings with no leading zeros $\}$. Prove $|\mathbb{Z}^+| = |S|$.

An Easier Way

lan Ludden Countability Part a

1

<ロト < 回 > < 回 > < 回 > .

An Easier Way

Definition

 $|A| \leq |B| \leftrightarrow \exists$ one-to-one $f : A \rightarrow B$

Ξ

<ロト < 回ト < 回ト < 回ト < 回ト -

Definition

 $|A| \leq |B| \leftrightarrow \exists$ one-to-one $f : A \rightarrow B$

Remember proving A = B by proving $A \subseteq B$ and $B \subseteq A$? Or f(n) is $\Theta(g(n))$ by proving f(n) is O(g(n)) and g(n) is O(f(n))?

3

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition

 $|A| \leq |B| \leftrightarrow \exists$ one-to-one $f : A \rightarrow B$

Remember proving A = B by proving $A \subseteq B$ and $B \subseteq A$? Or f(n) is $\Theta(g(n))$ by proving f(n) is O(g(n)) and g(n) is O(f(n))?

Theorem (Cantor-Schroeder-Bernstein)

Given sets A and B, if there exist one-to-one functions $f : A \rightarrow B$ and $g : B \rightarrow A$, then there exists a bijection $h : A \rightarrow B$.

 $(|A| \leq |B| \land |B| \leq |A| \rightarrow |A| = |B|)$

• Gives two-way bounding approach for proving |A| = |B|

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト … 臣

Applying the Cantor-Schroeder-Bernstein Theorem

Example 3: Prove $|\mathbb{N}^2| = |\mathbb{N}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove $|\mathbb{N}^2| = |\mathbb{N}|$.

- 4 同 ト 4 三 ト 4 三 ト

Applying the Cantor-Schroeder-Bernstein Theorem

Example 3: Prove $|\mathbb{N}^2| = |\mathbb{N}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove $|\mathbb{N}^2| = |\mathbb{N}|$.

Example 4: Prove $|\mathbb{N}| = |\{\text{passwords of lowercase letters}\}|$

Use the Cantor-Schroeder-Bernstein Theorem to prove $|\mathbb{N}| = |\{\text{passwords of lowercase letters}\}|.$

- Formally define what it means for two sets to have the same cardinality.
- Construct a bijection between two sets to prove they have the same cardinality.
- Connect cardinality relationships to the existence of one-to-one functions.