
State Diagrams
Part c: Transition Functions and Counting States

Ian Ludden

Ian Ludden State Diagrams Part c 1 / 9



Learning Objectives

By the end of this lesson, you will be able to:

• Formally define a transition function.
• Evaluate ways of storing functions in a computer.
• Compute the number of states for an example system.

Ian Ludden State Diagrams Part c 2 / 9



Learning Objectives

By the end of this lesson, you will be able to:
• Formally define a transition function.

• Evaluate ways of storing functions in a computer.
• Compute the number of states for an example system.

Ian Ludden State Diagrams Part c 2 / 9



Learning Objectives

By the end of this lesson, you will be able to:
• Formally define a transition function.
• Evaluate ways of storing functions in a computer.

• Compute the number of states for an example system.

Ian Ludden State Diagrams Part c 2 / 9



Learning Objectives

By the end of this lesson, you will be able to:
• Formally define a transition function.
• Evaluate ways of storing functions in a computer.
• Compute the number of states for an example system.

Ian Ludden State Diagrams Part c 2 / 9



Transition Functions

Consider a state diagram with a set of states S , a start state s0 ∈ S ,
end state(s) Q ⊆ S , a set of actions A, and a transition function δ.
Formally, δ has type signature δ : S × A→ P(S).

Example: Garage Door Keypad

Ian Ludden State Diagrams Part c 3 / 9

mathm
Pencil



Transition Functions

Consider a state diagram with a set of states S , a start state s0 ∈ S ,
end state(s) Q ⊆ S , a set of actions A, and a transition function δ.
Formally, δ has type signature δ : S × A→ P(S).

Example: Garage Door Keypad

Ian Ludden State Diagrams Part c 3 / 9

mathm
Pencil



Transition Functions

Consider a state diagram with a set of states S , a start state s0 ∈ S ,
end state(s) Q ⊆ S , a set of actions A, and a transition function δ.
Formally, δ has type signature δ : S × A→ P(S).

Example 1: Garage Door Keypad

Ian Ludden State Diagrams Part c 4 / 9



Transition Functions

Consider a state diagram with a set of states S , a start state s0 ∈ S ,
end state(s) Q ⊆ S , a set of actions A, and a transition function δ.
Formally, δ has type signature δ : S × A→ P(S).

Example 1: Garage Door Keypad

Ian Ludden State Diagrams Part c 4 / 9



Why Output a Set of States?

δ : S × A→ P(S)

Example 2: Phone Lattice

Ian Ludden State Diagrams Part c 5 / 9



Why Output a Set of States?

δ : S × A→ P(S)

Example 2: Phone Lattice

Ian Ludden State Diagrams Part c 5 / 9

mathm
Pencil



Storing Transition Functions

• Option 1: List of input/output pairs

• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states

• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs

• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states

• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9

mathm
Pencil



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement

• Con: Slow to look up
• Option 2: 2D array of state/action pairs with lists of output

states

• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states

• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states

• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9

mathm
Pencil



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement

• Con: Lots of wasted space (many state diagrams are sparse)
• Option 3: 1D array of states with lists of possible actions and

next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9

mathm
Pencil



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states

• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states
• Pro: More compact

• Con: More bookkeeping
• Option 4: Get fancy with hash functions (hash tables,

dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states
• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9

mathm
Pencil



Storing Transition Functions

• Option 1: List of input/output pairs
• Pro: Easy to implement
• Con: Slow to look up

• Option 2: 2D array of state/action pairs with lists of output
states
• Pro: Easy to implement
• Con: Lots of wasted space (many state diagrams are sparse)

• Option 3: 1D array of states with lists of possible actions and
next states
• Pro: More compact
• Con: More bookkeeping

• Option 4: Get fancy with hash functions (hash tables,
dictionaries, etc.)

Ian Ludden State Diagrams Part c 6 / 9



Counting States: Exact

A simple digital clock has four digits (HH:MM) and an LED indicator
for “p.m.” How many states does the clock have:

• under normal operation?
• if the digits are not restricted to valid times?

Ian Ludden State Diagrams Part c 7 / 9

mathm
Pencil



Counting States: Exact

A simple digital clock has four digits (HH:MM) and an LED indicator
for “p.m.” How many states does the clock have:
• under normal operation?

• if the digits are not restricted to valid times?

Ian Ludden State Diagrams Part c 7 / 9



Counting States: Exact

A simple digital clock has four digits (HH:MM) and an LED indicator
for “p.m.” How many states does the clock have:
• under normal operation?
• if the digits are not restricted to valid times?

Ian Ludden State Diagrams Part c 7 / 9

mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)

• Connect 4 (image source)
• Chess (image source)
• Go (image source)
• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf
mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)
• Connect 4 (image source)

• Chess (image source)
• Go (image source)
• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf
mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)
• Connect 4 (image source)
• Chess (image source)

• Go (image source)
• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf
mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)
• Connect 4 (image source)
• Chess (image source)
• Go (image source)

• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf
mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)
• Connect 4 (image source)
• Chess (image source)
• Go (image source)
• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf
mathm
Pencil



Counting States: Estimate

• Tic-Tac-Toe (image source)
• Connect 4 (image source)
• Chess (image source)
• Go (image source)
• Starcraft II... (relevant tweet)

Fun fact: There are over 43 quintillion (4.3× 1019) permutations of the
3× 3 Rubik’s Cube. (Link to source)

Ian Ludden State Diagrams Part c 8 / 9

https://papergames.io/en/tic-tac-toe
https://www.joann.com/hasbro-gaming-connect-4-game-kit/16343857.html
https://www.smithsonianmag.com/smart-news/a-game-designer-thinks-he-can-improve-on-chess-1500-year-old-rules-180948179/
https://www.amazon.com/Hey-Play-Board-Game-Melaminepiece/dp/B07PDSP9DH
https://twitter.com/Liv_Boeree/status/1045025689710268421
http://web.mit.edu/sp.268/www/rubik.pdf


Recap: Learning Objectives

By the end of this lesson, you will be able to:
• Formally define a transition function.
• Evaluate ways of storing functions in a computer.
• Compute the number of states for an example system.

Ian Ludden State Diagrams Part c 9 / 9




