Proof by Contradiction Part b: More Examples

Ian Ludden

lan Ludden Proof by Contradiction Part b

By the end of this lesson, you will be able to:

伺下 イヨト イヨト

By the end of this lesson, you will be able to:

• Write a proof by contradiction.

→ Ξ → < Ξ</p>

Example 1: Anything But Two

Prove $\forall a, b \in \mathbb{Z}$, $a^2 - 4b \neq 2$.

lan Ludden Proof by Contradiction Part b

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 1: Anything But Two

Prove
$$\forall a, b \in \mathbb{Z}$$
, $a^2 - 4b \neq 2$.

Proof.

The proof is by contradiction. Suppose there exist integers a and b such that $a^2 - 4b = 2$. $a^2 - 4b = (2k)^2 - 4b$ $a^2 = 4L + 2$ = 4/2-46 $a^2 = 2(26+1)$ So and is even, $2 = 4(k^{2}-b)$ which means arisever. $1 = 2(k^2 - b)$ Lot a=2k where kEZ. So lis even. #

This is a contradiction. Therefore, $\forall a, b \in \mathbb{Z}$, $a^2 - 4b \neq 2$.

イロト イボト イヨト

Example 2: An Irrational Inequality

Prove $\sqrt{5} + \sqrt{13} > \sqrt{34}$.

lan Ludden Proof by Contradiction Part b

Ξ

・ロト ・ 四ト ・ ヨト・

Example 2: An Irrational Inequality

Prove $\sqrt{5} + \sqrt{13} > \sqrt{34}$.

Proof.

The proof is by contradiction. Suppose $\sqrt{5} + \sqrt{13} \le \sqrt{34}$. Source both sides: $5 + 2 + 13 \le 34$ $5 + 2 + 13 \le 34$ $165 \leq \frac{34 - 18}{2}$ $65 \leq 64.$ (15 +~ (-15 + 13)2 > 34 -15 + 13 - 134 This is a contradiction. Therefore, $\sqrt{5} + \sqrt{13} > \sqrt{34}$.

Example 3: Dense Graphs are Connected

lan Ludden

Let G = (V, E) be any graph with |V| = n. Prove that if every vertex in *G* has degree at least n/2, then *G* is connected.

Example 3: Dense Graphs are Connected

Let G = (V, E) be any graph with |V| = n. Prove that if every vertex in G has degree at least n/2, then G is connected. Proof. The proof is by contradiction. Suppose every vertex in G has degree at least n/2, but G is disconnected. The G has $\angle 22$ connected components; G, JEz, ..., GK Let G, be the conn. comp. with the fewest vertices. Then Gibas < h < 2 vertices. So degrees < 2-1. But every votex in G, has degree at bat

This is a contradiction. Therefore, G is connected.

By the end of this lesson, you will be able to:

• Write a proof by contradiction.