Proof by Contradiction Part b: More Examples

Ian Ludden

Ian Ludden [Proof by Contradiction Part b](#page-9-0) 16

 \leftarrow \Box \rightarrow

不定 网络草

Þ

By the end of this lesson, you will be able to:

目

スミドスミド

Ð $\,$ $\,$

 \leftarrow \Box \rightarrow

By the end of this lesson, you will be able to:

• Write a proof by contradiction.

目

化三氯化物三氯

Example 1: Anything But Two

Prove $\forall a, b \in \mathbb{Z}$, $a^2 - 4b \neq 2$.

Ian Ludden [Proof by Contradiction Part b](#page-0-0) 3/6

 \equiv

イロト イ部 トイミト イミトー

Example 1: Anything But Two

Prove
$$
\forall a, b \in \mathbb{Z}, a^2 - 4b \neq 2
$$
.

Proof.

The proof is by contradiction. Suppose there exist integers a and b such that $a^2 - 4b = 2$. $a^2-4b = (2b)^2-4b$ $a^2 = 4h + 2$ $= 4k^2 - 4k$ $a^{2} = 2(2b+1)$ S_0 a² is even, $2 = 4(k^2 - k)$ Which means a is even. $\frac{11}{1}$ = 2 (k²-lo) $Lst_{\alpha}=2k$ where $k \in \mathbb{Z}$. S_{0} lis even. \neq

This is a contradiction. Therefore, $\forall a, b \in \mathbb{Z}$, $a^2 - 4b \neq 2$.

Þ

イロト イ部 トイミト イミト

Example 2: An Irrational Inequality

Prove $\sqrt{5} + \sqrt{13}$ > √ 34.

Ξ

イロトメ 御 トメ ヨ トメ ヨ トー

Example 2: An Irrational Inequality

Prove $\sqrt{5} + \sqrt{13}$ > √ 34.

Proof.

The proof is by contradiction. Suppose $\sqrt[4]{5} + \sqrt{13} \leq 1$ √ 34. $\sqrt[3]{(\sqrt{5} + \sqrt{3})^2 - 15}^2$ $\sqrt{65}$ $\leq \frac{34 - 18}{2}$
 $65 \leq 64$. $= 8$ $(\sqrt{5} + \sqrt{13})^2 - 18$ $(15 + \sqrt{13})^2 > 34$
15 + $\sqrt{13} > \sqrt{34}$ This is a contradiction. Therefore, $\sqrt{5} + \sqrt{13} > \sqrt{34}$.

э

押 トイヨ トイヨト

Example 3: Dense Graphs are Connected

Let $G = (V, E)$ be any graph with $|V| = n$. Prove that if every vertex in G has degree at least $n/2$, then G is connected.

ミト・ミト

Example 3: Dense Graphs are Connected

Let $G = (V, E)$ be any graph with $|V| = n$. Prove that if every vertex in G has degree at least $n/2$, then G is connected. Proof. s anne $s s'$ "and" The proof is by contradiction. Suppose every vertex in G has degree at least $n/2$, but) G is disconnected. The G hos $k \ge 2$ connected components, $G_1, G_2, ..., G_V$ Let G_i be the coun. comp. with the fewert vertices. Than G_i has $\leq \frac{n}{k} \leq \frac{n}{2}$ vertices. So degrees $\leq \frac{n}{2} - 1$. But every vistex in G, has degree at test.

This is a contradiction. Therefore, G is connected.

イロン イ部ン イミン イヨン

Þ

By the end of this lesson, you will be able to:

• Write a proof by contradiction.

э

化三氯化物三氯