Collections of Sets

Part b: Partitions

Ian Ludden

By the end of this lesson, you will be able to:

By the end of this lesson, you will be able to:

• Define a partition of a set *A* informally and formally.

By the end of this lesson, you will be able to:

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set P is a partition of some specific set A.

By the end of this lesson, you will be able to:

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set P is a partition of some specific set A.
- Connect the equivalence classes of an equivalence relation on *A* to parts of a partition of *A*.

• Split a set into parts

• Split a set into parts

Definition

• Split a set into parts

Definition

(1)
$$\bigcup_{S \in \mathcal{P}} S = A$$
 (the sets cover all of A)

Split a set into parts

Definition

- (1) $\bigcup_{S \in \mathcal{P}} S = A$ (the sets cover all of A)
- (2) $S \neq \emptyset \ \forall S \in \mathcal{P}$ (the sets are non-empty)

Split a set into parts

Definition

- (1) $\bigcup_{S \in \mathcal{P}} S = A$ (the sets cover all of A)
- (2) $S \neq \emptyset \ \forall S \in \mathcal{P}$ (the sets are non-empty)
- (3) $S \cap U = \emptyset \ \forall S, U \in \mathcal{P}, S \neq U$ (the sets are pairwise disjoint)

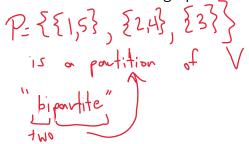
Examples of Partitions

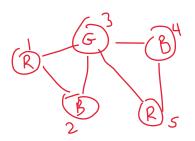
Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

Examples of Partitions

Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

• Color classes of a graph with a proper k-coloring





Examples of Partitions

Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

- Color classes of a graph with a proper k-coloring
- Splitting students into *k* project teams

• Let $A = \{ ©, 2, \pi, © \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{ ©, © \} \}$ a partition of A?

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of A?
- Let $A = \{ ©, 2, \pi, © \}$. Is $\mathcal{P} = \{ \{ 2, \pi \}, \emptyset \} \{ ⊙, ⊙, \pi \} \}$ a partition of A?

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of A?
- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2, \pi\}, \emptyset, \{ \odot, \odot, \pi \} \}$ a partition of A?
- Define $Q_1 = \{(a,b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \ge 0\}$, $Q_2 = \{(a,b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \ge 0\}$, $Q_3 = \{(a,b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \le 0\}$, and $Q_4 = \{(a,b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \le 0\}$.
 - Is $\{Q_1, Q_2, Q_3, Q_4\}$ a partition of \mathbb{R}^2 ?

$$(1)\sqrt{(2)}\sqrt{(3)}\times$$

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of A?
- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2, \pi\}, \emptyset, \{ \odot, \odot, \pi \} \}$ a partition of A?
- Define $Q_1 = \{(a,b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \ge 0\}$, $Q_2 = \{(a,b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \ge 0\}$, $Q_3 = \{(a,b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \le 0\}$, and $Q_4 = \{(a,b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \le 0\}$. Is $\{Q_1,Q_2,Q_3,Q_4\}$ a partition of \mathbb{R}^2 ?
- Is $\{[n, n+1) : n \in \mathbb{Z}\}$ a partition of \mathbb{R} ?

Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

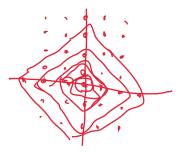
• Partitioning $\mathbb Z$ into congruence classes modulo k

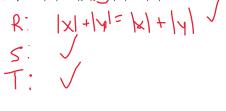
$$k=5$$
: {[6],[1],[2],[3],[4]}
(1) \checkmark (2) \checkmark (3) \checkmark

Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

- Partitioning $\mathbb Z$ into congruence classes modulo k
- Define R on \mathbb{Z}^2 : (x,y) R (a,b) iff |x| + |y| = |a| + |b|.





Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

- Partitioning \mathbb{Z} into congruence classes modulo k
- Define R on \mathbb{Z}^2 : (x, y) R (a, b) iff |x| + |y| = |a| + |b|.
- Given a partition \mathcal{P} of some set A, define a relation \sim on A by $x \sim y$ iff $\exists S \in \mathcal{P}$ such that $x, y \in S$.

```
R · √
```

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set P is a partition of some specific set A.
- Connect the equivalence classes of an equivalence relation on *A* to parts of a partition of *A*.