Collections of Sets Part a: Sets Containing Sets

Ian Ludden

lan Ludden Collections of Sets Part a

Learning Objectives

By the end of this lesson, you will be able to:

<ロト < 団ト < 団ト < 団ト

• Manipulate sets containing other sets using standard set operations.

・ 一下・ ・ コート

- Manipulate sets containing other sets using standard set operations.
- Define the power set $\mathbb{P}(A)$ for a set *A*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Manipulate sets containing other sets using standard set operations.
- Define the power set $\mathbb{P}(A)$ for a set *A*.
- Given a specific set *A*, list the elements of its power set.

• Image: A image:

- Manipulate sets containing other sets using standard set operations.
- Define the power set $\mathbb{P}(A)$ for a set *A*.
- Given a specific set *A*, list the elements of its power set.
- Interpret set-builder definitions of sets containing other sets.

- Manipulate sets containing other sets using standard set operations.
- Define the power set $\mathbb{P}(A)$ for a set *A*.
- Given a specific set *A*, list the elements of its power set.
- Interpret set-builder definitions of sets containing other sets.
- Interpret definitions for functions whose input and/or output values are sets (i.e., when the domain and/or co-domain is a power set).

• Image: A image:

- Manipulate sets containing other sets using standard set operations.
- Define the power set $\mathbb{P}(A)$ for a set *A*.
- Given a specific set *A*, list the elements of its power set.
- Interpret set-builder definitions of sets containing other sets.
- Interpret definitions for functions whose input and/or output values are sets (i.e., when the domain and/or co-domain is a power set).
- Write simple proofs involving collections of sets and/or functions whose input and/or output values are sets.

* 同 ト * ヨ ト * ヨ ト -

2 - {0,1,2,-1,-2,...> S= { a, b, c} $T = \{ \{ \alpha_{i}, b \}, \{ \alpha_{j}, c \}, \{ b, c \} \}$

Set (Integer)

"Sot (Set)

Set (Object)

1

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Example 1

$$A = \{ ©, ©, \{0, 2, 4\}, \{1, 3\}, \mathbb{Z} \}$$
 $B = \{0, \mathbb{Z}^+, ©, \{2, 4\}, \{1, 3\} \}$
 $B = \{0, \mathbb{Z}^+, \odot, \{2, 4\}, \{1, 3\} \}$

3

Example 1 $A = \{ \emptyset (\textcircled{o} \{0, 2, 4\}, \{1, 3\}, \mathbb{Z} \} \\ B = \{0, \mathbb{Z}^+, \textcircled{o}, \{2, 4\}, \{1, 3\} \} \\ \bullet A - B = \{ a \in A : a \notin \{ \} \} = \{ \bigotimes_{i=1}^{n} \{0, 2, 2\}, \mathbb{Z} \}$

▲御▶ ▲臣▶ ▲臣▶ 三臣

Example 1

 $A = \{ \textcircled{0}, \textcircled{0,2,4}, \textcircled{1,3}, \Bbb{Z} \}$ $B = \{ \varnothing, \Bbb{Z}^{+}, \textcircled{0}, \textcircled{2,4}, \textcircled{1,3} \}$

- *A B* =
- $A \cap B = \{ \underbrace{\bigcirc}_{1,3} \} \}$

Ξ

<ロト < 回ト < 回ト < 回ト < 回ト -

Example 1

$$A = \{ \textcircled{0}, \textcircled{0}, \{0, 2, 4\}, \{1, 3\}, \mathbb{Z} \}$$

$$B = \{ 0, \mathbb{Z}^+, \textcircled{0}, \{2, 4\}, \{1, 3\} \}$$

$$B = \{ 0, \mathbb{Z}^+, \textcircled{0}, \{2, 4\}, \{1, 3\} \}$$

$$B = \{ 0, \mathbb{Z}^+, \textcircled{0}, \{2, 4\}, \{1, 3\} \}$$

- *A B* =
- $A \cap B =$
- $|A \times B| = 25$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We have to go deeper

"A dream set within a dream set within a dream set"

lan Ludden Collections of Sets Part a

Ξ

<ロト < 回 > < 回 > < 回 > .

We have to go deeper

"A dream set within a dream set within a dream set"

(Inception Image Source)

ヘロト 人間 ト 人 ヨ ト・

lan Ludden Collections of Sets Part a

E

<ロト < 回 > < 回 > < 回 > .

Example 2

$$A = \{\{1,4\},\{5,7,8\},\{3\},\{\emptyset,\{2\}\}\}$$
 $B = \{\{3,6\},\emptyset,\{\emptyset,2\}\}$
 $B = \{\{3,6\},\emptyset,\{\emptyset,2\}\}$

lan Ludden Collections of Sets Part a

E

<ロト < 回 > < 回 > < 回 > .

Example 2

 $A = \{\{1,4\}, \{5,7,8\}, \{3\}, \{0, \{2\}\}\}$ $B = \{\{3,6\}, \emptyset, \{0, \{0,2\}\}\}$

• $A \cap B = \emptyset$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 2

 $\begin{aligned} & A = \{ \{1,4\}, \{5,7,8\}, \{3\}, \{\emptyset, \{2\}\} \} \\ & B = \{ \{3,6\}, \emptyset, \{\emptyset,2\} \} \end{aligned}$

- $A \cap B = \phi$
- B A = B

1

Example 2

$$A = \{\{1,4\},\{5,7,8\},\{3\},\{\emptyset,\{2\}\}\}\}$$

 $B = \{\{3,6\},\emptyset,\{\emptyset,2\}\}$

- $A \cap B =$
- *B A* =
- |A| = 4

lan Ludden Collections of Sets Part a

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Power Sets

lan Ludden Collections of Sets Part a

Ξ

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Given a set *A*, the **power set** of *A*, denoted $\mathbb{P}(A)$, is the set of all subsets of *A*. That is,

$$\mathbb{P}(A) = \{S : S \subseteq A\}.$$

Example 3

 $A = \{1, 3, 4\}$ $B = \{1, 2, 3, 5\}$

* 同 ト * ヨ ト * ヨ ト -

Given a set *A*, the **power set** of *A*, denoted $\mathbb{P}(A)$, is the set of all subsets of *A*. That is,

$$\mathbb{P}(A) = \{S : S \subseteq A\}.$$

Given a set A, the **power set** of A, denoted $\mathbb{P}(A)$, is the set of all subsets of A. That is,

$$\mathbb{P}(A) = \{S : S \subseteq A\}.$$

Example 3

$$A = \{1, 3, 4\}$$
$$B = \{1, 2, 3, 5\}$$

- $\mathbb{P}(A) = \{\emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}\}$ $\mathbb{P}(A) \cap \mathbb{P}(B) = \{\emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}\}$ = $\mathbb{P}(A \cap B)$

* 同 ト * ヨ ト * ヨ ト -

Given a set *A*, the **power set** of *A*, denoted $\mathbb{P}(A)$, is the set of all subsets of *A*. That is,

$$\mathbb{P}(A) = \{S : S \subseteq A\}.$$

Example 3 $A = \{1, 3, 4\}$ $B = \{1, 2, 3, 5\}$ $T_{s} \not 0 \not 0, \quad \forall e \leq \emptyset,$ $\forall e \in \emptyset, \quad \forall e \in \emptyset.$

- $\mathbb{P}(A) = \{\emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}\}$
- $\mathbb{P}(A) \cap \mathbb{P}(B) =$
- $\mathbb{P}(\emptyset) = \{\emptyset\}$

• Image: A image:

lan Ludden Collections of Sets Part a

Ξ

ヘロト 人間 ト 人 ヨト 人 ヨト

Example 4

Given a graph G = (V, E), let $n : V - (\mathbb{P}(V))$ such that n(v) is the set of vertices adjacent to v (not counting v, since we assume no self-loops).

$$n(b) = \{a, c\}$$

 $n(d) = \emptyset$
 $n(c) = n(a) = \{b\}$

何トイヨトイヨト

Example 4

Given a graph G = (V, E), let $n : V \to \mathbb{P}(V)$ such that n(v) is the set of vertices adjacent to v (not counting v, since we assume no self-loops).

Example 5

Given a graph G = (V, E), let $c : V \to \mathbb{P}(V)$ such that $c(v) = \{u \in V : dist(u, v) \le 2\}.$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Example 4

Given a graph G = (V, E), let $n : V \to \mathbb{P}(V)$ such that n(v) is the set of vertices adjacent to v (not counting v, since we assume no self-loops).

Example 5

Given a graph
$$G = (V, E)$$
, let $c : V \to \mathbb{P}(V)$ such that $c(v) = \{u \in V : dist(u, v) \le 2\}.$

Example 6

Proofs with Sets of Sets

Example 7

Let
$$g : \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$$
 such that $g(n) = \{q \in \mathbb{Z}^+ : \underline{n} \mid \underline{q}\}$. Such that $g(n) = \{q \in \mathbb{Z}^+ : \underline{n} \mid \underline{q}\}$. Such that $g(n) = \{q \in \mathbb{Z}^+ : \underline{n} \mid \underline{q}\}$. Such that $g(n) = \{q \in \mathbb{Z}^+ : \underline{n} \mid \underline{q}\}$. Such that $g(n) = \{q \in \mathbb{Z}^+ : \underline{n} \mid \underline{q}\}$.

lan Ludden Collections of Sets Part a

E

<ロト < 回 > < 回 > < 回 > .

Proofs with Sets of Sets

Example 7

Let $g : \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$ such that $g(n) = \{q \in \mathbb{Z}^+ : n \mid q\}$. Suppose $g(a) = g(2) \cap g(7)$. What is a? Justify your answer. mult mult mult of 7) of 2 mult of 14 Pf. (=) Let n = g [14] be arb. Then 14 n, so > In and 7/n (2) Let m (g (2) ng(7)) be arb. Then 2/m and 7/m, 50 14/m.

|□ ト ▲ 臣 ト ▲ 臣 ト □ 臣