
Algorithms
Part c: Karatsuba’s Algorithm

Ian Ludden

Ian Ludden Algorithms Part c 1 / 5



Learning Objectives

By the end of this lesson, you will be able to:

• Know the high-level structure of Karatsuba’s algorithm and its
big-O running time.

• Find a big-O solution for slightly harder recursive definitions,
e.g., requiring use of the change of base formula.

• Given a recursive algorithm (familiar or unfamiliar) express its
running time as a recursive definition.

Ian Ludden Algorithms Part c 2 / 5



Learning Objectives

By the end of this lesson, you will be able to:
• Know the high-level structure of Karatsuba’s algorithm and its

big-O running time.

• Find a big-O solution for slightly harder recursive definitions,
e.g., requiring use of the change of base formula.

• Given a recursive algorithm (familiar or unfamiliar) express its
running time as a recursive definition.

Ian Ludden Algorithms Part c 2 / 5



Learning Objectives

By the end of this lesson, you will be able to:
• Know the high-level structure of Karatsuba’s algorithm and its

big-O running time.
• Find a big-O solution for slightly harder recursive definitions,

e.g., requiring use of the change of base formula.

• Given a recursive algorithm (familiar or unfamiliar) express its
running time as a recursive definition.

Ian Ludden Algorithms Part c 2 / 5



Learning Objectives

By the end of this lesson, you will be able to:
• Know the high-level structure of Karatsuba’s algorithm and its

big-O running time.
• Find a big-O solution for slightly harder recursive definitions,

e.g., requiring use of the change of base formula.
• Given a recursive algorithm (familiar or unfamiliar) express its

running time as a recursive definition.

Ian Ludden Algorithms Part c 2 / 5



Multiplying Big Integers

Given big integers x and y (n = 2m bits each), find product xy

Attempt 1: Divide and conquer! (maybe)

x = x1 · 2m + x0, y = y1 · 2m + y0

Then,

xy = (x1 · 2m + x0)(y1 · 2m + y0)

= x1y1 · 22m + (x0y1 + x1y0) · 2m + x0y0

= A · 22m + B · 2m + C .

Ian Ludden Algorithms Part c 3 / 5



Multiplying Big Integers

Given big integers x and y (n = 2m bits each), find product xy

Attempt 1: Divide and conquer! (maybe)

x = x1 · 2m + x0, y = y1 · 2m + y0

Then,

xy = (x1 · 2m + x0)(y1 · 2m + y0)

= x1y1 · 22m + (x0y1 + x1y0) · 2m + x0y0

= A · 22m + B · 2m + C .

Ian Ludden Algorithms Part c 3 / 5



Multiplying Big Integers

Given big integers x and y (n = 2m bits each), find product xy

Attempt 1: Divide and conquer! (maybe)

x = x1 · 2m + x0, y = y1 · 2m + y0

Then,

xy = (x1 · 2m + x0)(y1 · 2m + y0)

= x1y1 · 22m + (x0y1 + x1y0) · 2m + x0y0

= A · 22m + B · 2m + C .

Ian Ludden Algorithms Part c 3 / 5



Karatsuba’s Algorithm

• Idea: Rearrange to eliminate one recursive call

Attempt 2: Divide and conquer!
Recall: A = x1y1, B = x0y1 + x1y0, C = x0y0.

Observation: B = (x1 + x0)(y1 + y0)− A− C
Only one multiplication needed to compute B .

K (1) = c

K (n) = 3K (n/2) + O(n)

Ian Ludden Algorithms Part c 4 / 5



Karatsuba’s Algorithm

• Idea: Rearrange to eliminate one recursive call

Attempt 2: Divide and conquer!
Recall: A = x1y1, B = x0y1 + x1y0, C = x0y0.

Observation: B = (x1 + x0)(y1 + y0)− A− C
Only one multiplication needed to compute B .

K (1) = c

K (n) = 3K (n/2) + O(n)

Ian Ludden Algorithms Part c 4 / 5



Karatsuba’s Algorithm

• Idea: Rearrange to eliminate one recursive call

Attempt 2: Divide and conquer!
Recall: A = x1y1, B = x0y1 + x1y0, C = x0y0.
Observation: B = (x1 + x0)(y1 + y0)− A− C

Only one multiplication needed to compute B .

K (1) = c

K (n) = 3K (n/2) + O(n)

Ian Ludden Algorithms Part c 4 / 5



Karatsuba’s Algorithm

• Idea: Rearrange to eliminate one recursive call

Attempt 2: Divide and conquer!
Recall: A = x1y1, B = x0y1 + x1y0, C = x0y0.
Observation: B = (x1 + x0)(y1 + y0)− A− C
Only one multiplication needed to compute B .

K (1) = c

K (n) = 3K (n/2) + O(n)

Ian Ludden Algorithms Part c 4 / 5



Recap: Learning Objectives

By the end of this lesson, you will be able to:
• Know the high-level structure of Karatsuba’s algorithm and its

big-O running time.
• Find a big-O solution for slightly harder recursive definitions,

e.g., requiring use of the change of base formula.
• Given a recursive algorithm (familiar or unfamiliar) express its

running time as a recursive definition.

Ian Ludden Algorithms Part c 5 / 5


