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Part c: Karatsuba’s Algorithm
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Learning Objectives

By the end of this lesson, you will be able to:

• Know the high-level structure of Karatsuba’s algorithm and its
big-O running time.

• Find a big-O solution for slightly harder recursive definitions,
e.g., requiring use of the change of base formula.

• Given a recursive algorithm (familiar or unfamiliar) express its
running time as a recursive definition.
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Multiplying Big Integers

Given big integers x and y (n = 2m bits each), find product xy

Attempt 1: Divide and conquer! (maybe)

x = x1 · 2m + x0, y = y1 · 2m + y0

Then,

xy = (x1 · 2m + x0)(y1 · 2m + y0)

= x1y1 · 22m + (x0y1 + x1y0) · 2m + x0y0

= A · 22m + B · 2m + C .
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Karatsuba’s Algorithm

• Idea: Rearrange to eliminate one recursive call

Attempt 2: Divide and conquer!
Recall: A = x1y1, B = x0y1 + x1y0, C = x0y0.

Observation: B = (x1 + x0)(y1 + y0)− A− C
Only one multiplication needed to compute B .

K (1) = c

K (n) = 3K (n/2) + O(n)
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Recap: Learning Objectives

By the end of this lesson, you will be able to:
• Know the high-level structure of Karatsuba’s algorithm and its

big-O running time.
• Find a big-O solution for slightly harder recursive definitions,

e.g., requiring use of the change of base formula.
• Given a recursive algorithm (familiar or unfamiliar) express its

running time as a recursive definition.
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