
Algorithms
Part a: Basic Data Structures

Ian Ludden

Ian Ludden Algorithms Part a 1 / 6



Learning Objectives

By the end of this lesson, you will be able to:

• Be able to read code that uses basic linked list operations (first,
rest, cons).

• Know the big-O running times of basic operations on linked
lists and arrays.

• For an algorithm involving loops (perhaps nested), express its
running time using summations.

• Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 2 / 6



Learning Objectives

By the end of this lesson, you will be able to:
• Be able to read code that uses basic linked list operations (first,

rest, cons).

• Know the big-O running times of basic operations on linked
lists and arrays.

• For an algorithm involving loops (perhaps nested), express its
running time using summations.

• Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 2 / 6



Learning Objectives

By the end of this lesson, you will be able to:
• Be able to read code that uses basic linked list operations (first,

rest, cons).
• Know the big-O running times of basic operations on linked

lists and arrays.

• For an algorithm involving loops (perhaps nested), express its
running time using summations.

• Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 2 / 6



Learning Objectives

By the end of this lesson, you will be able to:
• Be able to read code that uses basic linked list operations (first,

rest, cons).
• Know the big-O running times of basic operations on linked

lists and arrays.
• For an algorithm involving loops (perhaps nested), express its

running time using summations.

• Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 2 / 6



Learning Objectives

By the end of this lesson, you will be able to:
• Be able to read code that uses basic linked list operations (first,

rest, cons).
• Know the big-O running times of basic operations on linked

lists and arrays.
• For an algorithm involving loops (perhaps nested), express its

running time using summations.
• Given an unfamiliar but fairly simple function in pseudo-code,

analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 2 / 6



Arrays vs. Linked Lists
Arrays Linked Lists

R/W Add Remove R/W Add Remove
At/near start

In middle
At end

L = (4, 2, 7, 8, 1)
• first(L)
• rest(L)
• cons(element, L)

Ian Ludden Algorithms Part a 3 / 6



Arrays vs. Linked Lists
Arrays Linked Lists

R/W Add Remove R/W Add Remove
At/near start

In middle
At end

L = (4, 2, 7, 8, 1)
• first(L)
• rest(L)
• cons(element, L)

Ian Ludden Algorithms Part a 3 / 6

mathm
Pencil



Loops, Example 1: Max-area Triangle with Origin

Given an array of n 2D points, find a pair of points that maximizes
the area of the triangle formed with the origin.

Ian Ludden Algorithms Part a 4 / 6

mathm
Pencil



Loops, Example 1: Max-area Triangle with Origin

Given an array of n 2D points, find a pair of points that maximizes
the area of the triangle formed with the origin.

Ian Ludden Algorithms Part a 4 / 6



Loops, Example 2: Graph Reachability

Given a graph G and a start vertex s , find all nodes reachable from
s (i.e., in the same connected component as s).

Ian Ludden Algorithms Part a 5 / 6

mathm
Pencil



Loops, Example 2: Graph Reachability

Given a graph G and a start vertex s , find all nodes reachable from
s (i.e., in the same connected component as s).

Ian Ludden Algorithms Part a 5 / 6

mathm
Pencil



Learning Objectives

By the end of this lesson, you will be able to:
• Be able to read code that uses basic linked list operations (first,

rest, cons).
• Know the big-O running times of basic operations on linked

lists and arrays.
• For an algorithm involving loops (perhaps nested), express its

running time using summations.
• Given an unfamiliar but fairly simple function in pseudo-code,

analyze how long it takes using big-O notation.

Ian Ludden Algorithms Part a 6 / 6




