# Algorithms Part a: Basic Data Structures

lan Ludden

Ian Ludden Algorithms Part a

Ξ

<ロト < 団ト < 団ト < 団ト

<ロト < 団ト < 団ト < 団ト

• Be able to read code that uses basic linked list operations (first, rest, cons).

(4 回 ト 4 ヨ ト 4 ヨ ト

- Be able to read code that uses basic linked list operations (first, rest, cons).
- Know the big-O running times of basic operations on linked lists and arrays.

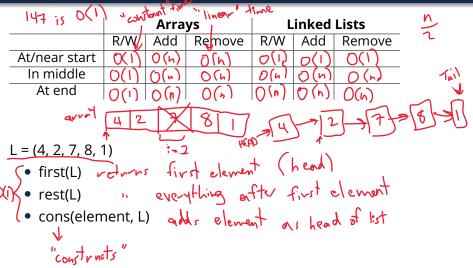
(4 回 ト 4 ヨ ト 4 ヨ ト

- Be able to read code that uses basic linked list operations (first, rest, cons).
- Know the big-O running times of basic operations on linked lists and arrays.
- For an algorithm involving loops (perhaps nested), express its running time using summations.

ロト ( 同 ) ( 三 ) ( 三 )

- Be able to read code that uses basic linked list operations (first, rest, cons).
- Know the big-O running times of basic operations on linked lists and arrays.
- For an algorithm involving loops (perhaps nested), express its running time using summations.
- Given an unfamiliar but fairly simple function in pseudo-code, analyze how long it takes using big-O notation.

・ロト ・ 同ト ・ ヨト ・ ヨト


## Arrays vs. Linked Lists

|               | Arrays |     |        | Linked Lists |     |        |
|---------------|--------|-----|--------|--------------|-----|--------|
|               | R/W    | Add | Remove | R/W          | Add | Remove |
| At/near start |        |     |        |              |     |        |
| In middle     |        |     |        |              |     |        |
| At end        |        |     |        |              |     |        |

E

<ロト < 回 > < 回 > < 回 > .

#### Arrays vs. Linked Lists



Ξ

イロト イヨト イヨト

## Loops, Example 1: Max-area Triangle with Origin

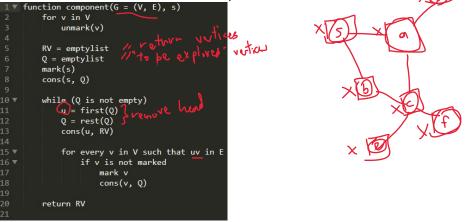
Given an array of  $n^2$ D points, find a pair of points that maximizes the area of the triangle formed with the origin.

| 1 🔻    | function max_triangle(arr)                                                                              |
|--------|---------------------------------------------------------------------------------------------------------|
| 2      | origin = $(0, 0)$                                                                                       |
| 3      |                                                                                                         |
| 4      | $\max_{i=1}^{n} area = 0$                                                                               |
| 5      | best_x = null                                                                                           |
| 6<br>7 | best_y = null                                                                                           |
| 8 🔻    | for i from 1 to n - c < n - c < l                                                                       |
| 9      | x = arr[1]                                                                                              |
| 10 -   |                                                                                                         |
| 11     | y = arc[j]                                                                                              |
| 12     | = cN - c(1)                                                                                             |
| 13     | a = dist(x, origin) // length of side a                                                                 |
| 14     |                                                                                                         |
| 15     | $c = dist(y, origin) // length of side bc = dist(x, y) // length of side c = c. n(n-1) which is O(n^2)$ |
| 16     |                                                                                                         |
| 17     | s = (a + b + c) / 2 / / semiperimeter                                                                   |
| 18     |                                                                                                         |
| 19     | nrea = sqrt(s * (s - a) * (s - b) * (s - c)) // Heron's Formula                                         |
| 20     |                                                                                                         |
| 21 🔻   | f area > max_area                                                                                       |
| 22     | max_area = area                                                                                         |
| 23     | best_x = x                                                                                              |
| 24     | best_y = y                                                                                              |
| 25     |                                                                                                         |
| 26     | return max_area // Could also return best_x and best_y if desired                                       |
| 27     |                                                                                                         |
| 28     |                                                                                                         |
|        |                                                                                                         |

・ 一下・ ・ コート

## Loops, Example 1: Max-area Triangle with Origin

Given an array of *n* 2D points, find a pair of points that maximizes the area of the triangle formed with the origin.

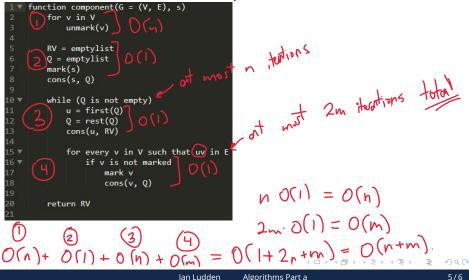

```
function max triangle(arr)
         origin = (0, 0)
         max area = 0
         best x = null
         best y = null
         for i from 1 to n
             x = arr[i]
             for j from i + 1 to n
                 y = arr[j]
                 a = dist(x, origin) // length of side a
                 b = dist(y, origin) // length of side b
                 c = dist(x, y) // length of side c
                 s = (a + b + c) / 2 // semiperimeter
19
                 area = sqrt(s * (s - a) * (s - b) * (s - c)) // Heron's Formula
                 if area > max area
22
23
24
25
26
27
                     max area = area
                     best x = x
                     best y = y
         return max area // Could also return best x and best y if desired
```

3

イロト イヨト イヨト

#### Loops, Example 2: Graph Reachability

Given a graph G and a start vertex s, find all nodes reachable from s (i.e., in the same connected component as s).




イロト イポト イヨト イヨト

#### Loops, Example 2: Graph Reachability

1V1=4, 1E1=m

Given a graph G and a start vertex s, find all nodes reachable from s (i.e., in the same connected component as s).



- Be able to read code that uses basic linked list operations (first, rest, cons).
- Know the big-O running times of basic operations on linked lists and arrays.
- For an algorithm involving loops (perhaps nested), express its running time using summations.
- Given an unfamiliar but fairly simple function in pseudo-code, analyze how long it takes using big-O notation.

・ロト ・ 同ト ・ ヨト ・ ヨト