Algorithms

Part a: Basic Data Structures

lan Ludden

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

e Be able to read code that uses basic linked list operations (first,
rest, cons).

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

e Be able to read code that uses basic linked list operations (first,
rest, cons).

e Know the big-O running times of basic operations on linked
lists and arrays.

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

e Be able to read code that uses basic linked list operations (first,
rest, cons).

e Know the big-O running times of basic operations on linked
lists and arrays.

e For an algorithm involving loops (perhaps nested), express its
running time using summations.

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

e Be able to read code that uses basic linked list operations (first,
rest, cons).

e Know the big-O running times of basic operations on linked
lists and arrays.

e For an algorithm involving loops (perhaps nested), express its
running time using summations.

e Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

lan Ludden Algorithms Part a

Arrays vs. Linked Lists

Arrays Linked Lists
R/W | Add | Remove | R/W | Add | Remove

At/near start
In middle
At end

lan Ludden Algorithms Part a

Arrays vs. Linked Lists

Arrays Linked Lists
R/W | Add | Remove | R/W | Add | Remove

At/near start
In middle
At end

L=(4,27281)
e first(L)
e rest(L)
e cons(element, L)

lan Ludden Algorithms Part a

Loops, Example 1: Max-area Triangle with Origin

Given an array of n 2D points, find a pair of points that maximizes
the area of the triangle formed with the origin.

et e e e
origin = (@, @)

max_area = @
best_x = null
best_y = null

for i from 1 to n
x = arr[i]
for j from i + 1 ton
y = arr[j]

a = dist(x, origin) // length of side a

b = dist(y, origin) // length of side b

c = dist(x, y) // length of side c
s=(a+b+c)/ 2 /f semiperimeter
area = sqrt(s * (s - a) * (s - b) * (s - ¢)) // Heron's Formula
if area > max_area
max_area = area
best_x = x

best y = y

return max_area // Could also return best x and best y if desired

lan Ludden Algorithms Part a 4/6

Loops, Example 1: Max-area Triangle with Origin

Given an array of n 2D points, find a pair of points that maximizes
the area of the triangle formed with the origin.

et e e e
origin = (@, @)

max_area = @
best_x = null
best_y = null

for i from 1 to n
x = arr[i]
for j from i + 1 ton
y = arr[j]

a = dist(x, origin) // length of side a

b = dist(y, origin) // length of side b

c = dist(x, y) // length of side c
s=(a+b+c)/ 2 /f semiperimeter
area = sqrt(s * (s - a) * (s - b) * (s - ¢)) // Heron's Formula
if area > max_area
max_area = area
best_x = x

best y = y

return max_area // Could also return best x and best y if desired

lan Ludden Algorithms Part a 4/6

Loops, Example 2: Graph Reachability

Given a graph G and a start vertex s, find all nodes reachable from
s (i.e., in the same connected component as s).

function component(G = (V, E), s)
for v in V
unmark(v)

RV = emptylist
Q = emptylist
mark(s)
cons(s, Q)

while (Q is not empty)
u = first(Q)
Q = rest(Q)
cons{u, RV)

for every v in V such that uv in E
if v is not marked
mark v

cons(v, Q)

return RV

lan Ludden Algorithms Part a

Loops, Example 2: Graph Reachability

Given a graph G and a start vertex s, find all nodes reachable from
s (i.e., in the same connected component as s).

function component(G = (V, E), s)
for v in V
unmark(v)

RV = emptylist
Q = emptylist
mark(s)
cons(s, Q)

while (Q is not empty)
u = first(Q)
Q = rest(Q)
cons{u, RV)

for every v in V such that uv in E
if v is not marked
mark v

cons(v, Q)

return RV

lan Ludden Algorithms Part a

Learning Objectives

By the end of this lesson, you will be able to:

e Be able to read code that uses basic linked list operations (first,
rest, cons).

e Know the big-O running times of basic operations on linked
lists and arrays.

e For an algorithm involving loops (perhaps nested), express its
running time using summations.

e Given an unfamiliar but fairly simple function in pseudo-code,
analyze how long it takes using big-O notation.

lan Ludden Algorithms Part a

