Big-O Part c: (Dis)Proving Big-O Relationships

Ian Ludden

lan Ludden Big-O Part c

Ξ

<ロト < 団ト < 団ト < 団ト

By the end of this lesson, you will be able to:

<ロト <回ト < 回ト < 回ト

By the end of this lesson, you will be able to:

• Given functions f and g, (dis)prove that f is O(g) and/or $\Theta(g)$.

• 同 • • 三 • •

∃ ⊳

Example 0: Warm-up

∃c,k ¢Rt ∀n≥k $|f(n)| \leq c |g(n)|.$ Prove 17n is $O(n^2)$. Fix some Prove porticular nuversal O=f(n) = cq(n) values claim Jekatch! Proof. Fix c= 17 and k=1. Let n=k be arbitrary. Ynz. Then, (since nzk-) $17_{n} \le 17_{n}^{2}$ k = 2017n 17_h is $O(n^2)$. \square $=cn^{2}$ So ヨトメヨトー Ξ Image: Image:

Example 0: Warm-up

Prove 17n is $O(n^2)$.

E

<ロト < 回 > < 回 > < 回 > .

Example 1: The bigger, the better

lan Ludden Big-O Part c

Ξ

ヘロト 人間 ト 人 ヨト 人 ヨト

Example 1: The bigger, the better

Prove $450n^2 + 25n + 2$ is $O(n^3)$. $P_{roo}f$. Fix c = 500, k = l. $450_{h}^{2} + 2S_{h} + 2 = c \cdot n^{3} \quad \forall n = k \quad L = t \cdot n = k \quad be \quad a \cdot b.$ $450_{h}^{3} + 2S_{h}^{3} + 2n^{3} = c \cdot n^{3} \quad lice \quad 2$ Then,Scratch. $450n^{2} + 25n + 2 \leq 450n^{3} + 25n^{3} + 2n^{2}$ (since $n \geq k = 1$) e= 500 $=477_{n}^{3}$ k= | 4 500 h 3 < 10 450 h2+25n+2 is (1)

Example 2: I've heard it both ways

 $\begin{cases} fis O(g) & and \\ gis O(f) & fis O(g) \\ gis \theta(f) & fis \theta(f). \end{cases}$

<ロト < 回 ト < 回 ト < 回 ト -

lan Ludden Big-O Part c

Ξ

Example 2: I've heard it both ways

Prove
$$2n \log n + 3n is \Theta(n \log n)$$
.
Schetch: $2n \log n + 3n is \Theta(n \log n)$.
Schetch: $2n \log n + 3n is \Theta(n \log n)$.
Schetch: $2n \log n + 3n is \Theta(n \log n)$
Schetch: $n \log n$ is $O(2n \lg n + 3n)$
 $c = 1, k = 1$
Schetch: $n \log n$ is $O(2n \lg n + 3n)$
 $c = 1, k = 1$
Pf. Fix $c = 5, k = 2$.
Let $n \ge k$ be arb.
Then,
 $2n \log n + 3n \le 2n \log n + 3n \log n$
 $(since n \ge k = 2)$
 $= 5n \log n$
 $= c \cdot h \cdot \log n \cdot D$
Pf. Fix $c = 1, k = 1$.
Let $n \ge k$ be arb.
Then,
 $n \log n \le 2n \log n$
 $\leq 2n \log n$
 $\leq 2n \log n + 3n$
 $= c \cdot (2n \log n + 3n)$.
I

Example 3: Trading places

lan Ludden Big-O Part c

Ξ

<ロト < 団ト < 団ト < 団ト

Example 3: Trading places

Prove
$$|\sin(n\pi/2)|$$
 is not $O(|\cos(n\pi/2)|)$. $\exists c_{j}k \in \mathbb{R}^{T}$ $\forall nzk$ $|f(n)| \leq c_{j}n$
 f_{roof} . Let $c_{j}k \in \mathbb{R}^{+}$ be arb. $\forall c_{j}k \in \mathbb{R}^{+}$ $\exists nz_{j}k$ $f(n)| \geq c_{j}n$
Construct $n = 2m + 1$, where $n \in \mathbb{Z}$
 $Then, nir odd nis odd.$
 $Then, nir odd nis odd.$
 $f(n) = 2m + 1$, where
 $|sin(\frac{hT}{2})| = | > 0 = c \cdot |cos(\frac{hT}{2})|$
 $f(n) = 2m + 1$, where
 $n \in \mathbb{Z}$ and mzk .
 $f(n) = 2m + 1$, where
 $n \in \mathbb{Z}$ and mzk .

<ロト < 団ト < 団ト < 団ト

Ξ

By the end of this lesson, you will be able to:

• Given functions f and g, (dis)prove that f is O(g) and/or $\Theta(g)$.

∃ ⊳

< 4 → < <