Big-O Part b: The Formal Definition

lan Ludden

lan Ludden Big-OPart a

Ξ

ヘロト 人間 ト 人 ヨト 人 ヨト

Ξ

<ロト < 団ト < 団ト < 団ト

• Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.

イロト イポト イヨト イヨト

- Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.
- For specific functions f and g, identify whether f is O(g) and/or $\Theta(g)$.

lan Ludden Big-OPart a

E

・ロト ・聞ト ・ヨト ・ヨト

Definition

Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

 $\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$

Ξ

<ロト < 回ト < 回ト < 回ト < 回ト -

Definition

Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$

Definition

Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$

Definition

Given functions
$$f, g: \mathbb{N} \to \mathbb{R}$$
, we say $f(n)$ is $O(g(n))$ if (and only if)
 $\exists c, k \in \mathbb{R}^+ \forall n \ge k, 0 \le f(n) \le c \cdot g(n).$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$

lan Ludden

lan Ludden Big-OPart a

Ξ

ヘロト 人間 ト 人 ヨト 人 ヨト

• Big-O is a non-strict partial order (like \leq on \mathbb{R})

< □ > < □ > < □ > < □ > < □ > .

- Big-O is a non-strict partial order (like ≤ on R) vefl, durt is ymm)
 ≪ is a strict partial order (like < on R) irrefl, anti- transit.

- Big-O is a non-strict partial order (like \leq on \mathbb{R})
- \ll is a strict partial order (like < on \mathbb{R})

イロト イポト イヨト イヨト

- Big-O is a non-strict partial order (like \leq on \mathbb{R})
- \ll is a strict partial order (like < on $\mathbb R$)

Definition

If f(n) is O(g(n)) and g(n) is O(f(n)), then we say f(n) is $\Theta(g(n))$ (and vice versa).

$$[n^{2}] = \{n^{2}, \frac{h^{2}}{5}, 3n^{2} + l_{0}n - 7, \dots\}$$

< ロト < 同ト < 三ト <

- Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.
- For specific functions f and g, identify whether f is O(g) and/or $\Theta(g)$.