Big-O

Part a: Asymptotic Analysis of Functions
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Learning Objectives

By the end of this lesson, you will be able to:

e Define what it means for a function f to be asymptotically
smaller than g (f < g), where g is another function.

e For specific functions f and g, identify whether f is
asymptotically smaller than g (f < g).

e Know the asymptotic relationships among key primitive
functions: constant, log n, n, nlog n, polynomials of higher
orders, exponentials, factorial.
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e Most (useful) code takes different amounts of time on different
input sizes.
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Asymptotic Analysis

e How do functions of n behave in the limit as n — ~?
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Asymptotic Analysis

e How do functions of n behave in the limit as n — ~?

Definition
Given functions f, g : N — R, we say f and g are asymptotically
similar (f(n) =~ g(n)) if (and only if)

lim f(n)
n—oo0 g(n)

9

where c is some positive constant.
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Asymptotic Analysis

e How do functions of n behave in the limit as n — ~?

Definition
Given functions f,g : N — R, we say f and g are asymptotically
similar (f(n) =~ g(n)) if (and only if)
Y
- lim f(n)
n—oo0 g(n)

where c is someconstant.

We say f is asymptotically smaller than g (f(n) < g(n)) if (and only
if)

9

lim i
n—o0 g(n)
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The Dominant Term Method

Not a fan of limits? Just look at fastest-growing term.
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The Dominant Term Method

Not a fan of limits? Just look at fastest-growing term.

f(n) =13n 4—@-& 5 versus g(n) 4n* — 2
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The Dominant Term Method

Not a fan of limits? Just look at fastest-growing term.

f(n)=13n+n'+5 versus g(n)=6"+4n*-2
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Not a fan of limits? Just look at fastest-growing term.

f(n)=13n+n'+5 versus g(n)=6"+4n* -2
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Example 2

7n versus r(n) =

h(w) << rn)
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The Dominant Term Method

Not a fan of limits? Just look at fastest-growing term.

f(n)=13n+n'+5 versus g(n)=6"+4n* -2

) 724

h(n) = 15nlogn+7n versus r(n) = n?/16 +3logn
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Learning Objectives

By the end of this lesson, you will be able to:

e Define what it means for a function f to be asymptotically
smaller than g (f < g), where g is another function.

e For specific functions f and g, identify whether f is
asymptotically smaller than g (f < g).

e Know the asymptotic relationships among key primitive
functions: constant, log n, n, nlog n, polynomials of higher
orders, exponentials, factorial.
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