More Recursion Trees

lan Ludden

lan Ludden More Recursion Trees

Ξ

<ロト < 回ト < 回ト < 回ト

By the end of this lesson, you will be able to:

• Given a recursively defined function, find its closed form by drawing a recursion tree and adding up the work at all levels.

伺下 イヨト イヨト

Example 1: Convenient Cancellation

Define $g : \mathbb{Z}^+ \to \mathbb{Z}^+$ as

$$g(1) = 3$$

$$g(n) = 3g(n/3) + 2n \quad \forall n \ge 3.$$

Find a closed-form for g(n) using a recursion tree. (Assume *n* is a power of 3.)

3

▲御▶ ▲ 陸▶ ▲ 陸▶

Example 1: Convenient Cancellation

Example 2: Changing the Base Case

Let $S = \mathbb{Z}^+ - \{1\}$, and define $q: S \to \mathbb{Z}$ as q(2) = 2 $q(n) = 2q(n-1) + 5 \quad \forall n \ge 3.$

Find a closed-form for q(n) using a recursion tree.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 2: Changing the Base Case

Let $S = \mathbb{Z}^+ - \{1\}$, and define	7	J			
$q: S \to \mathbb{Z}$ as $q(2) = 7 \cdot 2^{-1}$	-) - 2	Level	Input	Total V	Vork
$q(2) \neq 2$ $q(3) = 7 \int_{-5}^{3-2} -5$	- 7√	0	n	S	
		1	n-1	2 5	
$q(n)=2q(n-1)+5 \forall n\geq 3.$	9	2	n-2	2.5	
d(3) = 2t(2) + s = 2(2) + s	5=1	k	n-k	2*.5	h-1
Find a closed-form for $q(n)$ using	g	h	n-h=2	2W.2	= 2
a recursion tree.			V		
(5)		1-=10-	Σ		
		n l	-l .		n -1
	9.6) = 2	5.6	ς \ +	2
(\tilde{c})		J = C		-)	
		ĸ	-0	1.5	-1
K K EVE)	C	こう(2)	+2"
(5) (5) (5) (5)		1			1
\mathcal{A}		- 5	(2 ^h - 1) + 2	5 4-2
	5.21-2.	+ 2 ^{'-'} -	5	$\mathbf{)}$	
		· 2		1 - 1 - 1 - 1	

By the end of this lesson, you will be able to:

• Given a recursively defined function, find its closed form by drawing a recursion tree and adding up the work at all levels.