Introduction to Trees

lan Ludden

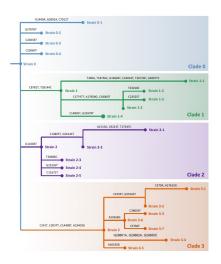
Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

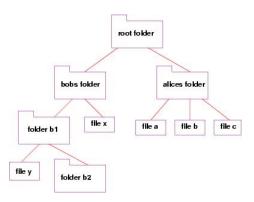
By the end of this lesson, you will be able to:

Define and use tree terminology.


Learning Objectives

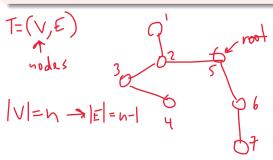
By the end of this lesson, you will be able to:

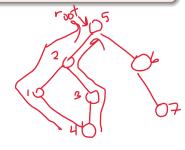
- Define and use tree terminology.
- Define and identify various tree properties.


Why do we care about trees?

Why do we care about trees?

A phylogenetic tree (Source)


Why do we care about trees?



A file tree (Source)

Definition

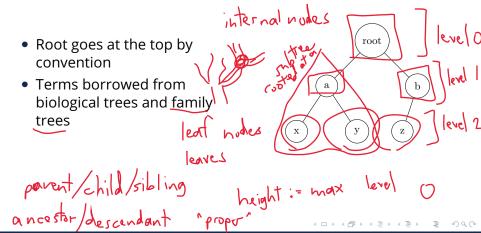
A **tree** is a connected acyclic graph. A **rooted** tree has a special vertex called a **root**.

Definition

A **tree** is a connected acyclic graph. A **rooted** tree has a special vertex called a **root**.

Root goes at the top by convention

Definition

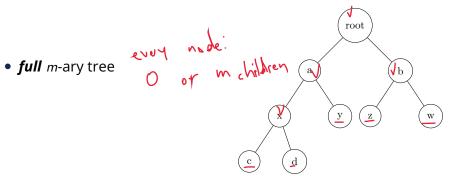

A *tree* is a connected acyclic graph. A *rooted* tree has a special vertex called a *root*.

- Root goes at the top by convention
- Terms borrowed from biological trees and family trees

Definition

A **tree** is a connected acyclic graph. A **rooted** tree has a special vertex called a **root**.

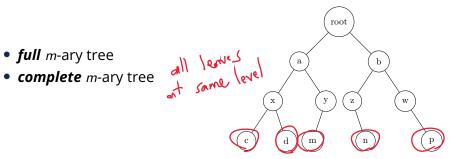
Definition


An *m-ary tree* is a tree in which each node has at most *m* children.

Definition

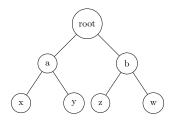
An *m-ary tree* is a tree in which each node has at most *m* children.

Definition


An *m-ary tree* is a tree in which each node has at most *m* children.

Definition

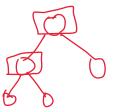
An *m-ary tree* is a tree in which each node has at most *m* children.


- **full** m-ary tree

Definition

An *m-ary tree* is a tree in which each node has at most *m* children.

- full m-ary tree
- complete m-ary tree
- full *and* complete *m*-ary tree


Fact

A full m-ary tree with i internal nodes has mi + 1 nodes total.

Proof: Ask everyone how many kids they have (then add the root).

Internal nodes hearth

Leaf nodes 0 earth mi + 1

Fact

A full m-ary tree with i internal nodes has mi + 1 nodes total.

Proof: Ask everyone how many kids they have (then add the root).

Fact

A binary tree of height h has at least h+1 and at most $2^{h+1}-1$ nodes.

Fact

A full m-ary tree with i internal nodes has mi + 1 nodes total.

Proof: Ask everyone how many kids they have (then add the root).

Fact

A binary tree of height h has at least h + 1 and at most $2^{h+1} - 1$ nodes.

Proof: Consider a path of length h and a full, complete binary tree of height h.

Fact

The height of a full and complete binary tree with n nodes is proportional to $\log_2 n$.

Ian Ludden

$$[a,b,c,d,e,f]$$
 $[a,b,c,d,e,f]$ $[a,b,c,f]$ $[a,b,c,f]$ $[a,b,e,f]$ $[a,b,c,f]$ $[a,b,c,f]$

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Define and use tree terminology.
- Define and identify various tree properties.