Induction, Episode VI: Return of the I.H.

Part c: Proving Closed Forms by Induction
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Learning Objective

By the end of this lesson, you will be able to:

e Use induction to prove facts about a recursively defined
function, e.g., that it has some specific closed form.
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Inductive Proof on Recursive Definition

Example 1: Our Old Friend Visits Again

Define g : Z* — Z* by

£(n) = {2 if@

n(n+1) + g(n—1) otherwise.

Prove the closed-form expression for g(n) is T(+2),
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Inductive Proof on Recursive Definition

Example 2: Odd Fibonacci
Recall the Fibonacci sequence defined by

F0) SF@) =1
F(n)=F(n—1)+ F(n—2)V¥n>2.

Prove F(3n+ 1) is odd for all n € N. 7 H);i-:(f
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Recap: Learning Objective

By the end of this lesson, you will be able to:

e Use induction to prove facts about a recursively defined
function, e.g., that it has some specific closed form.
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