Induction, Episode V: The Recursion Fairy Strikes Back Part c: Induction Proofs of More Involved Claims

lan Ludden

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 1/6

- 伊ト - ヨト - ヨ

• Adjust the indexing of the I.H. and inductive step.

- Adjust the indexing of the I.H. and inductive step.
- Write induction proofs for claims with inequalities, relations, extra variables, or other non-formula claims.

 $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

伺下 イヨト イヨト

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 3/6

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □

Claim

For all $a, b \in \mathbb{Z}^+$ and $n \in \mathbb{N}$, $a \mid b \rightarrow a^n \mid b^n$.

< 回 > < 三 > < 三 >

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 3/6

Claim
For all
$$a, b \in \mathbb{Z}^+$$
 and $n \in \mathbb{N}$, $a \mid b \to a^n \mid b^n$, $P(u)$.

Proof.

The proof is by induction on *n*. $P(n) := \forall a, b \in \mathbb{Z}^+, a \mid b \to a^n \mid b^n$. Base case: We show P(0). $\alpha^\circ = 1$, $b^\circ = 1$, so $d^\circ \setminus b^\circ = 1$. Inductive step: Let k > 0 be arbitrary.

Suppose P(n) is true for $0 \le n < k$. $n \ge 0, l_1, ..., k < -1$

Claim

For all $a, b \in \mathbb{Z}^+$ and $n \in \mathbb{N}$, $a \mid b \to a^n \mid b^n$. $\forall_n \in \mathbb{N}$, $\forall_n \in \mathbb{Z}^+$

Proof.

The proof is by induction on *n*. $P(n) := \forall a, b \in \mathbb{Z}^+$, $a \mid b \to a^n \mid b^n$ Base case: We show P(0).

Inductive step: Let k > 0 be arbitrary. Suppose P(n) is true for $0 \le n < k$. Let $a, b \in \mathbb{Z}^+$ be arbitrary and suppose $a \mid b$. Then $b = b^{k-1} \cdot b = (b^{k-1} \cdot (a \cdot q)) = (a \cdot q) \cdot (a \cdot q) = d^k (mq)$.

Hence P(k) is true.

By induction, P(n) is true for all $n \ge n_0$. = 0

lan Ludden Induction, Episode V: The Recursion Fairy Strikes Back 4/6

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □

Claim

 $\forall n \in \mathbb{N}, n \geq n_0, P(n).$

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 4/6

< ロト < 回 ト < 回 ト < 回</p>

1

Claim

 $\forall n \in \mathbb{N}, n \ge n_0, P(n).$

Proof.

Base cases: We show $P(n_0), P(n_0 + 1), ..., P(n_1)$.

n Z M

Inductive step: Let $k > n_1$ be arbitrary. Suppose P(n) is true for $n_0 \le n < k$.

3

Claim

 $\forall n \in \mathbb{N}, n \geq n_0, P(n).$

Proof.

Base cases: We show $P(n_0), P(n_0 + 1), ..., P(n_1)$.

Inductive step: Let $k > n_1$ be arbitrary. Suppose P(n) is true for $n_0 \le n \le k$. [Details] Hence P(k) is true. $p(n_0), P(n_0+1), \dots, P(k-1), P(k)$ By induction, P(n) is true for all $n \ge n_0$.

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 5/6

▲ □ ▶ ▲ 三 ▶ ▲ 三

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin(nx)| \le n |\sin x|$.

$$rac{1}{2}$$
 of $n=\frac{1}{2}$, $x=\pi$

< 回 > < 三 > < 三 >

白津▶

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Proof.

The proof is by induction on *n*. $P(n) := \forall x \in \mathbb{R}, |\sin nx| \le n |\sin x|$. Base case: When n = 0, $|\sin nx| = 0 \le 0 |\sin x|$.

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Proof.

The proof is by induction on *n*. $P(n) := \forall x \in \mathbb{R}, |\sin nx| \le n |\sin x|$. Base case: When n = 0. Inductive step: Let $k \ge 0$ be arbitrary, and suppose P(n) is true for $|\alpha + b| \leq |\alpha| + |b|$. $0 \le n \le k$. We show P(k+1) is true: $\left| sin(k+1)x \right| = \left| sin(kx+x) \right|$ < k sinx + sinx = sin lox cos x + sin x cos kx =(++) |sinx |. E sin kx cosx + sinx cos kx Hence P(k+1) = sin kx - cos x + Isin x + cos kx Elsinkx + sinx is true Hence by induction, P(n) is true for all $n \in \mathbb{N}$. < 111 ►

- Adjust the indexing of the I.H. and inductive step.
- Write induction proofs for claims with inequalities, relations, extra variables, or other non-formula claims.