Induction, Episode V: The Recursion Fairy Strikes Back

Part c: Induction Proofs of More Involved Claims

lan Ludden

Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

By the end of this lesson, you will be able to:

Adjust the indexing of the I.H. and inductive step.

Learning Objectives

By the end of this lesson, you will be able to:

- Adjust the indexing of the I.H. and inductive step.
- Write induction proofs for claims with inequalities, relations, extra variables, or other non-formula claims.

Claim

For all $a, b \in \mathbb{Z}^+$ and $n \in \mathbb{N}$, $a \mid b \to a^n \mid b^n$.

Claim

For all $a, b \in \mathbb{Z}^+$ and $n \in \mathbb{N}$, $a \mid b \to a^n \mid b^n$.

Proof.

The proof is by induction on n. $P(n) := \forall a, b \in \mathbb{Z}^+$, $a \mid b \to a^n \mid b^n$. Base case: We show P(0).

Inductive step: Let k > 0 be arbitrary. Suppose P(n) is true for $0 \le n < k$.

Claim

For all $a, b \in \mathbb{Z}^+$ and $n \in \mathbb{N}$, $a \mid b \to a^n \mid b^n$.

Proof.

The proof is by induction on n. $P(n) := \forall a, b \in \mathbb{Z}^+$, $a \mid b \to a^n \mid b^n$. Base case: We show P(0).

Inductive step: Let k > 0 be arbitrary. Suppose P(n) is true for $0 \le n < k$.

Hence P(k) is true.

By induction, P(n) is true for all $n \ge n_0$.

Claim

 $\forall n \in \mathbb{N}, n \geq n_0, P(n).$

Claim

 $\forall n \in \mathbb{N}, n \geq n_0, P(n).$

Proof.

Base cases: We show $P(n_0), P(n_0 + 1), ..., P(n_1)$.

Inductive step: Let $k > n_1$ be arbitrary. Suppose P(n) is true for $n_0 \le n < k$.

Claim

 $\forall n \in \mathbb{N}, n \geq n_0, P(n).$

Proof.

Base cases: We show $P(n_0), P(n_0 + 1), ..., P(n_1)$.

Inductive step: Let $k > n_1$ be arbitrary.

Suppose P(n) is true for $n_0 \le n < k$.

[Details] Hence P(k) is true.

By induction, P(n) is true for all $n \ge n_0$.

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Proof.

The proof is by induction on n. $P(n) := \forall x \in \mathbb{R}$, $|\sin nx| \le n |\sin x|$.

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Proof.

The proof is by induction on n. $P(n) := \forall x \in \mathbb{R}, |\sin nx| \le n |\sin x|$. Base case: When n = 0,

Claim

For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin nx| \le n |\sin x|$.

Proof.

The proof is by induction on n. $P(n) := \forall x \in \mathbb{R}$, $|\sin nx| \le n |\sin x|$. Base case: When n = 0, Inductive step: Let $k \ge 0$ be arbitrary, and suppose P(n) is true for $0 \le n \le k$. We show P(k+1) is true:

Hence by induction, P(n) is true for all $n \in \mathbb{N}$.

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Adjust the indexing of the I.H. and inductive step.
- Write induction proofs for claims with inequalities, relations, extra variables, or other non-formula claims.