Induction, Episode V: The Recursion Fairy Strikes Back Part b: Picking Base Cases

lan Ludden

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 1/6

- 伊ト - ヨト - ヨ

• Decide how many base cases to include in an inductive proof.

- Decide how many base cases to include in an inductive proof.
- Explain why proofs with too few base cases break.

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 3/6

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □

• **Q**: Can you have too many base cases?

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 3/6

- **Q**: Can you have too many base cases?
- A: No, never.

- **Q**: Can you have too many base cases?
- A: No, never.
- Example: Filling tour buses with groups of size 3 or 5

- **Q**: Can you have too many base cases?
- A: No, never.
- Example: Filling tour buses with groups of size 3 or 5
- **Q**: Can you have too few base cases?

- **Q**: Can you have too many base cases?
- A: No, never.
- Example: Filling tour buses with groups of size 3 or 5
- **Q**: Can you have too few base cases?
- A: Yes! Watch out for this.

Example 1: No base case

Claim

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$.

イロト イボト イヨト イヨ

590

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be arbitrary, and suppose *n* is irrational for n = 0, 1, ..., k - 1.

Ian Ludden Induction, Episode V: The Recursion Fairy Strikes Back 4/6

イロト イボト イヨト イヨト

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is irrational for n = 0, 1, ..., k - 1. We then have k = (k - 1) + 1.

(4 回 ト 4 ヨ ト 4 ヨ ト

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is irrational for $n = 0, 1, \dots, k - 1$. We then have k = (k - 1) + 1. By the I.H., k - 1 is irrational.

・ 一下・ ・ ヨト・ ・ ヨト

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is irrational for $n = 0, 1, \dots, k - 1$. irrational + t to the irrational for k = (k - 1) + 1. We then have k = (k - 1) + 1. By the I.H., k - 1 is irrational. Since 1 is rational and we know the sum of a rational and an irrational is irrational, k is irrational.

Every natural number is irrational.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is irrational for $n = 0, 1, \dots, k - 1$. We then have k = (k - 1) + 1. By the I.H., k - 1 is irrational. Since 1 is rational and we know the sum of a rational and an irrational is irrational, k is irrational. Hence by induction, every natural number is irrational.

・ 一下・ ・ ヨト・ ・ ヨト

Claim

Every natural number is even.

Proof.

The proof is by induction on $n \in \mathbb{N}$.

Claim

Every natural number is even.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Base case: When n = 0, $n = 2 \cdot 0$, so n is even.

Claim

Every natural number is even.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Base case: When n = 0, $n = 2 \cdot 0$, so n is even. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is even for $n = 0, 1, \dots, k - 1$.

Claim

Every natural number is even.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Base case: When n = 0, $n = 2 \cdot 0$, so n is even. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is even for n = 0, 1, ..., k - 1. We then have

$$k = (k-2) + 2$$

= $2m + 2$ for some $k-2$ is even by the I.H.)
= $2(m+1)$,

so k is even.

Claim

Every natural number is even.

Proof.

The proof is by induction on $n \in \mathbb{N}$. Base case: When n = 0, $n = 2 \cdot 0$, so n is even. Let $k \in \mathbb{N}$ be arbitrary, and suppose n is even for n = 0, 1, ..., k - 1. We then have

$$k = (k-2) + 2$$

= 2m + 2 (since k - 2 is even by the I.H.)
= 2(m + 1),

so *k* is even.

Hence by induction, every natural number is even.

- Decide how many base cases to include in an inductive proof.
- Explain why proofs with too few base cases break.