
Induction, Episode IV: A New Proof Technique
Part a: Mathematical Foundation and Helpful Analogies
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Learning Objectives

By the end of this lesson, you will be able to:

• State the Well-Ordering Principle and the Principle of
Mathematical Induction.
• Explain induction to your smart ten-year-old cousin.
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The Well-Ordering Principle

Fact (The Well-Ordering Principle)
Every nonempty subset of Z+ contains a smallest element. (We say that
Z+ is well-ordered.) This holds for N too.

• Not true for Q+, R+

• Interesting, but is it useful??
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The Principle of Mathematical Induction

Theorem
Let S(n) denote a statement (logical expression) about n, where n can
be replaced with any natural number. If
(a) S(0) is true (the base case), and
(b) For all k ∈ Z+,

∧k−1
n=0 S(0)→ S(k) (the inductive step),

then S(n) is true for all n ∈ N.

Proof (sketch).

More flexible version:[
S(n0) ∧

[
∀k > n0

[
k−1∧
n=0

S(0)→ S(k)

]]]
→ ∀n ≥ n0 S(n).
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Analogy 1: Dominos

Imagine an infinitely long line of dominos standing on end.

[
S(n0) ∧

[
∀k > n0

[
k−1∧
n=0

S(0)→ S(k)

]]]
→ ∀n ≥ n0 S(n).
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Analogy 2: Infinite Skyscraper

Imagine you’re a civil engineer tasked with building a skyscraper
with infinitely many floors.
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Recap: Learning Objectives

By the end of this lesson, you will be able to:
• State the Well-Ordering Principle and the Principle of

Mathematical Induction.
• Explain induction to your smart ten-year-old cousin.
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