Induction, Episode IV: A New Proof Technique Part a: Mathematical Foundation and Helpful Analogies

lan Ludden

< 回 > < 三 > <

200

• State the Well-Ordering Principle and the Principle of Mathematical Induction.

< 回 > < 三 > < 三 >

- State the Well-Ordering Principle and the Principle of Mathematical Induction.
- Explain induction to your smart ten-year-old cousin.

DQA

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ *contains a smallest element. (We say that* \mathbb{Z}^+ *is well-ordered.) This holds for* \mathbb{N} *too.*

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ *contains a smallest element. (We say that* \mathbb{Z}^+ *is well-ordered.) This holds for* \mathbb{N} *too.*

• Not true for \mathbb{Q}^+ , \mathbb{R}^+ 9 $\mathbb{O}^{<} \frac{9}{2} < 9$

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ *contains a smallest element. (We say that* \mathbb{Z}^+ *is well-ordered.) This holds for* \mathbb{N} *too.*

- Not true for \mathbb{Q}^+ , \mathbb{R}^+
- Interesting, but is it useful??

The Principle of Mathematical Induction

Deduction

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If (a) S(0) is true (the **base case**), and (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(k) \rightarrow S(k)$ (**the inductive step**), then S(n) is true for all $n \in \mathbb{N}$.

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If

(a) S(0) is true (the **base case**), and (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(0) \to S(k)$ (**the inductive step**), then S(n) is true for all $n \in \mathbb{N}$.

Proof (sketch). Let S(h) be a statement defined
$$\forall h \in \mathbb{N}$$
.
Let $F = \{f \in \mathbb{N} : \neg S(f)\}$, we want to show $F = \emptyset$.
Suppose to the contrary that $F \neq \emptyset$.
Then by the well-ordering principle, F has
a smallest element, M .
If $m = 0$, then $S(0)$ is false, but, the assumed $\neg f(p) \vee f$
 $f = M = 0$, then $S(0)$ is false, but, the distance $\neg f(p) \vee f$
 $M = 0$, then $S(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $O \leq h \leq m - 1$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $M = 0$, $f(m)$ is the far all $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $f(m)$ is the far all $f(m)$.
 $f(m)$ is the far all $f(m)$ is the far all $f(m)$ is the far all $f(m)$.
 $f(m)$ is the far all $f(m)$.

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If

(a) S(0) is true (the **base case**), and (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(\underline{\mathfrak{A}}) \to S(k)$ (**the inductive step**), then S(n) is true for all $n \in \mathbb{N}$.

Proof (sketch).

More flexible version:
(b)

$$\begin{bmatrix} \langle \boldsymbol{\alpha} \rangle \\ S(n_0) \land \begin{bmatrix} \boldsymbol{el} \\ \forall k > n_0 \end{bmatrix} \begin{bmatrix} k-1 \\ \bigwedge \\ n \neq k \end{pmatrix} \rightarrow S(k) \end{bmatrix} \Rightarrow \forall n \ge n_0 S(n).$$

Analogy 1: Dominos

Imagine an infinitely long line of dominos standing on end.

(1日) (1日) (1日)

э

Analogy 1: Dominos

Imagine an infinitely long line of dominos standing on end.

$$\begin{bmatrix} S(n_0) \land \left[\forall k > n_0 \left[\bigwedge_{n=1}^{k-1} S(0) \rightarrow \underline{S(k)} \right] \right] \end{bmatrix} \rightarrow \forall n \ge n_0 S(n).$$

(1日) (1日) (1日)

э

Analogy 2: Infinite Skyscraper

Imagine you're a civil engineer tasked with building a skyscraper with infinitely many floors.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Analogy 2: Infinite Skyscraper

Imagine you're a civil engineer tasked with building a skyscraper with infinitely many floors.

- State the Well-Ordering Principle and the Principle of Mathematical Induction.
- Explain induction to your smart ten-year-old cousin.