Induction, Episode IV: A New Proof Technique

Part a: Mathematical Foundation and Helpful Analogies

lan Ludden

Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

By the end of this lesson, you will be able to:

 State the Well-Ordering Principle and the Principle of Mathematical Induction.

Learning Objectives

By the end of this lesson, you will be able to:

- State the Well-Ordering Principle and the Principle of Mathematical Induction.
- Explain induction to your smart ten-year-old cousin.

The Well-Ordering Principle

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ contains a smallest element. (We say that \mathbb{Z}^+ is **well-ordered**.) This holds for \mathbb{N} too.

The Well-Ordering Principle

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ contains a smallest element. (We say that \mathbb{Z}^+ is **well-ordered**.) This holds for \mathbb{N} too.

• Not true for \mathbb{Q}^+ , \mathbb{R}^+

The Well-Ordering Principle

Fact (The Well-Ordering Principle)

Every nonempty subset of \mathbb{Z}^+ contains a smallest element. (We say that \mathbb{Z}^+ is **well-ordered**.) This holds for \mathbb{N} too.

- Not true for \mathbb{Q}^+ , \mathbb{R}^+
- Interesting, but is it useful??

The Principle of Mathematical Induction

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If

- (a) S(0) is true (the **base case**), and
- (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(n) \to S(k)$ (the inductive step), then S(n) is true for all $n \in \mathbb{N}$.

The Principle of Mathematical Induction

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If

- (a) S(0) is true (the **base case**), and
- (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(n) \to S(k)$ (the inductive step), then S(n) is true for all $n \in \mathbb{N}$.

Proof (sketch).

The Principle of Mathematical Induction

Theorem

Let S(n) denote a statement (logical expression) about n, where n can be replaced with any natural number. If

- (a) S(0) is true (the **base case**), and
- (b) For all $k \in \mathbb{Z}^+$, $\bigwedge_{n=0}^{k-1} S(n) \to S(k)$ (the inductive step), then S(n) is true for all $n \in \mathbb{N}$.

Proof (sketch).

More flexible version:

$$\left[S(n_0) \wedge \left[\forall k > n_0 \left[\bigwedge_{n=n_0}^{k-1} S(n) \to S(k)\right]\right]\right] \to \forall n \geq n_0 S(n).$$

Analogy 1: Dominos

Imagine an infinitely long line of dominos standing on end.

Analogy 1: Dominos

Imagine an infinitely long line of dominos standing on end.

$$\left[S(n_0) \wedge \left[\forall k > n_0 \left[\bigwedge_{n=n_0}^{k-1} S(n) \to S(k)\right]\right]\right] \to \forall n \geq n_0 S(n).$$

Analogy 2: Infinite Skyscraper

Imagine you're a civil engineer tasked with building a skyscraper with infinitely many floors.

Analogy 2: Infinite Skyscraper

Imagine you're a civil engineer tasked with building a skyscraper with infinitely many floors.

$$\left[S(n_0) \wedge \left[\forall k > n_0 \left[\bigwedge_{n=n_0}^{k-1} S(n) \to S(k)\right]\right]\right] \to \forall n \geq n_0 S(n).$$

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- State the Well-Ordering Principle and the Principle of Mathematical Induction.
- Explain induction to your smart ten-year-old cousin.