Graph Coloring

Ian Ludden

Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

By the end of this lesson, you will be able to:

 State the definitions/notation of graph coloring and chromatic number.

Learning Objectives

By the end of this lesson, you will be able to:

- State the definitions/notation of graph coloring and chromatic number.
- Apply upper and lower bounds to prove the chromatic number of a graph.

Definition

• A *k-coloring* of a graph G = (V, E) is a function $h: V \to \{1, 2, ..., k\}$ such that $\forall uv \in E, h(u) \neq h(v)$.

proper k-coloning

Definition

- A *k-coloring* of a graph G = (V, E) is a function $h: V \to \{1, 2, ..., k\}$ such that $\forall uv \in E, h(u) \neq h(v)$.
- If a k-coloring of G exists, then G is k-colorable.

Definition

- A *k-coloring* of a graph G = (V, E) is a function $h: V \to \{1, 2, ..., k\}$ such that $\forall uv \in E, h(u) \neq h(v)$.
- If a k-coloring of G exists, then G is k-colorable.
- The *chromatic number* of G, $\chi(G)$, is the minimum integer k such that G is k-colorable.

Definition

- A *k-coloring* of a graph G = (V, E) is a function $h: V \to \{1, 2, ..., k\}$ such that $\forall uv \in E, h(u) \neq h(v)$.
- If a k-coloring of G exists, then G is k-colorable.
- The **chromatic number** of G, $\chi(G)$, is the minimum integer k such that G is k-colorable.

Definition

- A k-**coloring** of a graph G = (V, E) is a function $h: V \to \{1, 2, ..., k\}$ such that $\forall uv \in E, h(u) \neq h(v)$.
- If a k-coloring of G exists, then G is k-colorable.
- The **chromatic number** of G, $\chi(G)$, is the minimum integer k such that G is k-colorable.

Fact

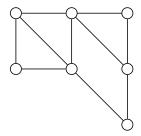
If G is k-colorable, then $\chi(G) \leq k$. Upper bound on $\chi(G)$

• Order the vertices v_1, v_2, \ldots, v_n .

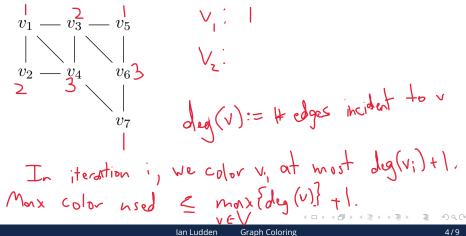
- Order the vertices v_1, v_2, \ldots, v_n .
- For *i* from 1 to *n*:

- Order the vertices v_1, v_2, \ldots, v_n .
- For *i* from 1 to *n*:
- Assign v_i the smallest positive integer (color) that hasn't been used yet by one of its neighbors.

- Order the vertices v_1, v_2, \ldots, v_n .
- For *i* from 1 to *n*:
- Assign v_i the smallest positive integer (color) that hasn't been used yet by one of its neighbors.



- Order the vertices v_1, v_2, \ldots, v_n .
- For i from 1 to n:
- Assign v_i the smallest positive integer (color) that hasn't been used yet by one of its neighbors.



Ian Ludden

- Order the vertices v_1, v_2, \ldots, v_n .
- For *i* from 1 to *n*:
- Assign v_i the smallest positive integer (color) that hasn't been used yet by one of its neighbors.

Lemma

If D is the maximum degree of a vertex in G, then the greedy coloring uses at most D+1 colors.

$$\mathcal{X}(G) \leq D+1$$

Upper Bounds on $\chi(G)$

• A specific *k*-coloring of *G* proves $\chi(G) \leq k$.

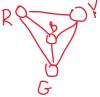
Upper Bounds on $\chi(G)$

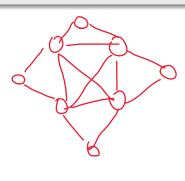
- A specific *k*-coloring of *G* proves $\chi(G) \leq k$.
- If the maximum degree in G is D, then G is (D+1)-colorable.

Lower Bound on $\chi(G)$

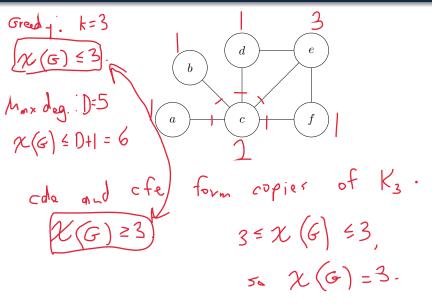
Lemma

If G contains K_n as a subgraph, then $\chi(G) \geq n$.





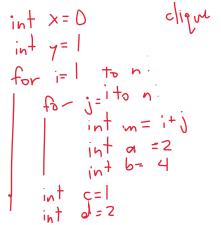
Example: Find and prove chromatic number

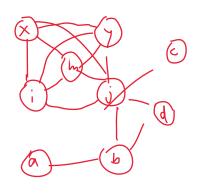


lan Ludden Graph Coloring

Applications

Register allocation when compiling C/C++/Java





Applications

- Register allocation when compiling C/C++/Java
- 2 Coloring a political map (search "Four Color Theorem" online)

Source: CC BY-SA 3.0, Wikimedia

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- State the definitions/notation of graph coloring and chromatic number.
- Apply upper and lower bounds to prove the chromatic number of a graph.