Proving Set Equality

lan Ludden

Learning Objective

By the end of this lesson, you will be able to:

Learning Objective

By the end of this lesson, you will be able to:

• Prove a set equality by proving inclusion in both directions.

Set Equality as Two-way Bounding

Set Equality as Two-way Bounding

Definition

Given sets A and B in a universe U, we say A and B are equal (A = B) if (and only if) $A \subseteq B$ and $B \subseteq A$.

Set Equality as Two-way Bounding

Definition

Given sets A and B in a universe U, we say A and B are equal (A = B) if (and only if) $A \subseteq B$ and $B \subseteq A$.

• Can view as two-way bounding: A is no larger than B, and B is no larger than A

Example 1

Let
$$A = \{2m+5 : m \in \mathbb{Z}\}$$
 and $B = \{2n-3 : n \in \mathbb{Z}\}$. Prove $A = B$.
 $A = \{1,3,5,7,9\}$ $-5,-3,-1,1,3,5$
Proof: $0 A \subseteq B$:
Let $a \in A$ be and That is, $a = 2m+5$ for some $m \in \mathbb{Z}$.
Then $a = 2m+5$
 $= 2m+8-3$
 $= 2(m+4)-3$
 $= 2n-3$, where $n = m+4 \in \mathbb{Z}$.
So $a \in B$, and we conclude $A \subseteq B$.

2BCA: Let beB be arb So b=2n-3 for some he7. 1=2n-3=2n-3+8-8=(2n-8)+5=2m+5, where m=n-4=7.

Example 2

Let
$$S = \{x \in \mathbb{Z} : x \text{ is an odd multiple of } 3\}$$
 and $T = [3]_6$.

Prove $S = T$.

Since $S \subseteq T$ and $T \subseteq S$, we conclude $S \subseteq T$.

Let $S \subseteq S$ be only.

Then $S \subseteq S$ be only.

Then $S \subseteq S$ be only.

Case $S \subseteq S$ be only.

Then $S \subseteq S$ be only.

5=3(2n+1)=6n+3. 5-3=6n

Let tet be oub. Thun 6/(t-3), so t-3=6n, n&Z. So t=6n+3. Sina t= 2(3n+1)+1, t is Also, t= 3(2n+1), so Hence t is an odd multiple of 3 (t < 5).

50 6 (5-3)

Recap: Learning Objective

By the end of this lesson, you will be able to:

• Prove a set equality by proving inclusion in both directions.