One-to-One Functions

Ian Ludden

By the end of this lesson, you will be able to:

• Define and recognize one-to-one functions and bijections.

- Define and recognize one-to-one functions and bijections.
- State and apply the pigeonhole principle.

- Define and recognize one-to-one functions and bijections.
- State and apply the pigeonhole principle.
- Count the number of one-to-one functions from A to B.

- Define and recognize one-to-one functions and bijections.
- State and apply the pigeonhole principle.
- Count the number of one-to-one functions from A to B.
- Prove a given function is (not) one-to-one.

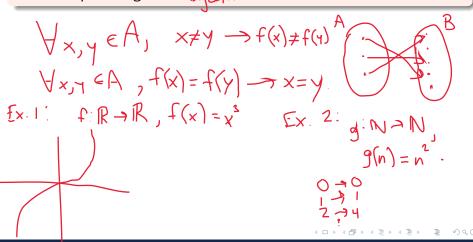
- Define and recognize one-to-one functions and bijections.
- State and apply the pigeonhole principle.
- Count the number of one-to-one functions from A to B.
- Prove a given function is (not) one-to-one.
- Use WLOG to simplify proofs.

When is a function one-to-one?

When is a function one-to-one?

Definition

A function is **one-to-one** if every element in the co-domain has at most one pre-image.



Size Requirements, and Pigeons in Holes

Size Requirements, and Pigeons in Holes

Theorem (Pigeonhole Principle)

If n objects are placed into k containers and n > k, then at least one container has more than one object.

Size Requirements, and Pigeons in Holes

Theorem (Pigeonhole Principle)

If n objects are placed into k containers and n > k, then at least one container has more than one object.

Corollary

Given a function $f: A \rightarrow B$, if |A| > |B|, then f is not one-to-one.

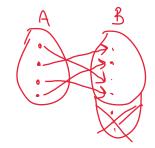
What if a functions is both onto and one-to-one?

What if a functions is both onto and one-to-one?

Definition

A function is called a *bijection* if it is both onto and one-to-one.

one-to-one requires
$$|A| \leq |B|$$
 $\int |A| = |B|$ onto requires $|A| \geq |B|$



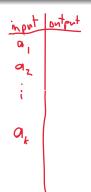
Counting One-to-One Functions

•
$$f: A \rightarrow B$$
, $|A| = \sqrt{k} |B| = \sqrt{k}$

$$(n - (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) \cdot (n-k)!$$

Counting One-to-One Functions

- $f: A \rightarrow B, |A| = \chi, |B| = \psi$
- $P(n,k) = \frac{n!}{(n-k)!}$



Counting One-to-One Functions

- $f: A \to B$, $|A| = \frac{k}{M}$, $|B| = \frac{k}{M}$ $P(n, k) = \frac{n!}{(n-k)!} = \frac{k!}{(n-k)!} = \frac{k!}{(n-k)!}$ If k = n, n! permutations (one-to-one functions and bijections)

Proving one-to-one

Universal claim:
$$\forall x, y \in A$$
, $f(x) = f(y) \rightarrow x = y$.

Proving one-to-one

Universal claim:

Example

$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(n) = 2n - 1$

Proof. Let
$$X, y \in \mathbb{Z}$$
 be arb.
Suppose $f(x) = f(y)$.
That is, $2x - 1 = 2y - 1$
 $2x = 2y$
 $x = y$.
Hence f is one-to-one. Π

Proving not one-to-one

Existential claim:
$$(\forall x, y \in A, x \neq y \rightarrow f(x) \neq (y))$$
 $p \rightarrow q$

$$\exists x, y \in A, x \neq y \text{ and } f(x) = f(y).$$

Proving not one-to-one

Existential claim:

Example

$$h: \mathbb{Z} \to \mathbb{Z}$$
, $h(n) = n^2$

Proof Consider
$$X = -1$$
 and $Y = 1$.

Then $X \neq Y$, but $h(x) = (-1)^2 = 1 = 1^2 = h(Y)$.

So h is not one-to-one. \square

• WLOG = "Without loss of generality"

- WLOG = "Without loss of generality"
- Tool for combining cases in proofs

- WLOG = "Without loss of generality"
- Tool for combining cases in proofs
- Example: Prove $\forall x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$.

Case | X = 0,420

- WLOG = "Without loss of generality"
- Tool for combining cases in proofs
- Example: Prove $\forall x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$.
- Non-example: Prove that for all $x \in \mathbb{Z}$, x(x+1) is even.

Recap: Learning Objectives

- Define and recognize one-to-one functions and bijections.
- State and apply the pigeonhole principle.
- Count the number of one-to-one functions from A to B.
- Prove a given function is (not) one-to-one.
- Use WLOG to simplify proofs.