Proving Properties of Relations

Ian Ludden

lan Ludden Proving Properties of Relations

< A

- 47 ▶

A E + A E +

• Prove properties about relations (formally).

- Prove properties about relations (formally).
- Prove a relation is (not) a certain type.

Proving Antisymmetry

Ian Ludden Proving Properties of Relations

<ロト < 団ト < 団ト < 団ト

Ξ

Definition

A relation *R* on *A* is *antisymmetric* if for all $x, y \in A$ with $x \neq y$, if x R y, then $y \not R x$.

A B K A B K

lan Ludden Proving Properties of Relations

< □ > < 同 >

Definition

A relation *R* on *A* is **antisymmetric** if for all $x, y \in A$ with $x \neq y$, if x R y, then $y \not R x$.

Definition

A relation *R* on *A* is *antisymmetric* if for all $x, y \in A$, if x R y and y R x, then x = y.

ヘロト ヘ戸ト ヘヨト ヘヨト

Proving Antisymmetry

Example

Let $A = \mathbb{R}$, and define a relation R on A as x R y iff $|x| \le y$. Prove R is antisymmetric.

Let
$$x,y \in A$$
 be only. and suppose $x Ry$ and $y Rx$.
That is, $|x| \le y$ and $|y| \le x$.
We observe $y \ge 0$ and $x \ge 0$.
So $y = |y|$ and $x = |x|$.
By substitution, $x \le y$ and $y \le x$.

Э

イロト イボト イヨト イヨト

Proving/Disproving Types of Relations

Example

Let $A = \mathbb{R}$, and define a relation R on A as x R y iff $x \le |y|$. Prove/disprove R is a linear order. point in order (RAT) all poirs comparable (XRy or JRy) R: Let XEA be arb. x < 1x1, so xRx. V A: let XMEA be and yRX. Suprose X Ry and yRX. $\forall x_{17} \in A, x_{R_{Y}} \land \gamma R_{x} \rightarrow x \in Y$ That is, x elyl and y elxl. Consider X = - | and Y = ! So XRy and yRX, but x = y. Hence R is not your. Then X=-1 < 11=1/1 and $y=1 \leq |-1| = |x|$.

Proving/Disproving Types of Relations

Example

- Prove properties about relations (formally).
- Prove a relation is (not) a certain type.