Set Theory: Laws and Proofs

lan Ludden

lan Ludden Set Theory: Laws and Proofs

A

伺下 イヨト イヨト

• Remember fundamental laws/rules of set theory.

- Remember fundamental laws/rules of set theory.
- Apply definitions and laws to set theoretic proofs.

Commutative, associative

 $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$

(日本) (日本) (日本)

- Commutative, associative
- Distributive

An(Bvc) = (AnB)v(Anc)

3

イロト イボト イヨト イヨト

- Commutative, associative
- Distributive
- Double complement

$$\overline{(\bar{\lambda})} = A$$

• = •

- Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:

$$\neg (p \land q) = \neg p \lor \neg q$$
$$\neg (p \lor q) = \neg p \land \neg q$$

E

ヨト・モラト

- Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:
 - $\overline{S \cap T} = \overline{S} \cup \overline{T}$

Image: Second second

- Commutative, associative
- Distributive
- Double complement
- De Morgan's Laws:
 - $\overline{S \cap T} = \overline{S} \cup \overline{T}$
 - $\overline{S \cup T} = \overline{S} \cap \overline{T}$
- And many more...

ヨト・ヨト

Cardinality after Set Operations

• Size of set union $|S \cup T| = ?$ $|S| + |T| - |S \cap T|$

A B + A B +

	Menu			
	Appetizer	Entree	Dessert	
• Size of set union	Wings	Pizza	Gelato	
• Size of Cartesian product (product rule) $\mathcal{M} = \mathcal{A} \times \mathbb{E} \times \mathbb{D}$	Mozz. sticks Onion rings Salad Calamari Soup	Pasta Steak Chicken	Rhubarb Pie Choc. cake Cheesecake Cookie	
$= \{(a,e,d) : a \in A,$	eE,deD}			
$M = A \times E \times D = A $	· · E · D	< □ > < 곋 >) D (V = 4 = 5 4 = 5	0

• $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$

lan Ludden Set Theory: Laws and Proofs

E

・ロト ・ 四ト ・ ヨト ・ ヨト ・

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.

1

イロト イボト イヨト イヨト

- $A \subseteq B \longleftrightarrow \forall a \in A$ $a \in B$
- Let $a \in A$ be arbitrary.
- [Details]

lan Ludden Set Theory: Laws and Proofs

Ξ

<ロト <回ト < 回ト < 回ト

- $A \subset B \longleftrightarrow \forall a \in A, a \in B$

- Let a ∈ A be arbitrary.
 [Details] don't use any facts don't of other than a ∈ A.
 So a ∈ B (Since a was arbitrarily chosen, we conclude A ⊆ B.)□

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \Box

- $A \subset B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \Box

Example

.

Define
$$A = \{a \in \mathbb{Z} : a^2 - 9 \text{ is odd and } |a| < 25\}$$
 and
 $B = \{b \in \mathbb{Z} : b \text{ is even}\}$. Prove $A \subseteq B$.
Let $a \in A$ be arbitrary. Then, $a^2 - 9 = (a - 3)(a + 3) \text{ is odd}$
and $|a| < 25$.
She $(a - 3)(a + 3)$ is odd, $a - 3$ is odd and $a + 3$ is odd.
By define $a - 3 = 2k + 1$ for some $k \in \mathbb{Z}$.
 $a = 2k + 1 = 2(k + 2)$. Hence a is every so $a \in B$.

- $A \subseteq B \longleftrightarrow \forall a \in A, a \in B$
- Let $a \in A$ be arbitrary.
- [Details]
- So $a \in B$. Since a was arbitrarily chosen, we conclude $A \subseteq B$. \Box

Example

Define
$$A = \{a \in \mathbb{Z} : a^2 - 9 \text{ is odd } and |a| < 25\}$$
 and $B = \{b \in \mathbb{Z} : b \text{ is even}\}$. Prove $A \subseteq B$.

To prove set equality, show inclusion in both directions $A = B \iff A \subseteq B$ and $B \subseteq A$.

Another Set Proof

Let $A, B, C \subseteq U$. Prove that $(A - B) \subseteq C$ if and only if $(A - C) \subseteq B$. (→) suppose (A-B) EC. ;ff (W.T.S. (A-C) 5 B.) Lat a(A-C) be a.b. Then $a \in A$, and $a \notin C$. Since $a \notin C$, $a \notin (A-B)$ by assumption DThen mEA-(A-B)=AnBSB. Hence are B, and we conclude (A-C) = B. (c) (Similar)

日本本語を本語を本語を

- Remember fundamental laws/rules of set theory.
- Apply definitions and laws to set theoretic proofs.

Summary of set theory laws: https://en.wikipedia.org/wiki/Algebra_of_sets