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Learning Objectives

By the end of this lesson, you will be able to:

• Recall basic set theoretic definitions and notation.
• Compute basic operations on concrete sets.
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Definitions via Examples

Definition
A set is an unordered collection of objects.

Examples

• Z
• {apple,banana,orange}
• {a ∈ N | a ≤ 10}
• {} = ∅
• The equivalence class of 4 mod 7:

• {. . . ,−10,−3, 4, 11, 18, . . .}
• {m ∈ Z : m ≡ 4 (mod 7)}
• {m ∈ Z : 7 | (m − 4)}
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Cardinality and Inclusion

Definition
The cardinality of a set S , denoted |S |, is the number of distinct
objects it contains.

Definition
Given sets S and T , we call S a subset of T (denoted S ⊆ T ) if every
element in S is also an element of T . We call S a proper subset of T
(denoted S ⊂ T ) if T has at least one element that S doesn’t.
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Set Operations

Let S and T be sets in universe U .
• Intersection:
S ∩ T := {s : s ∈ S ∧ s ∈ T}

• Union:
S ∪ T := {s : s ∈ S ∨ s ∈ T}
• Difference:
S \ T := S − T :=
{s ∈ S : s 6∈ T}
• Complement:
S := {s ∈ U : s 6∈ S}
• Cartesian product:
S × T :=
{(s, t) : s ∈ S ∧ t ∈ T}
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Computing Set Operations

U := Z
A := {a ∈ Z : a ≥ 4 or a < 0}
B := {b ∈ Z : b is odd and |b| < 6}
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Recap: Learning Objectives

By the end of this lesson, you will be able to:
• Recall basic set theoretic definitions and notation.
• Compute basic operations on concrete sets.
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