Number Theory: The Euclidean Algorithm

Ian Ludden

Ian Ludden [Number Theory: The Euclidean Algorithm](#page-35-0) 1/8

同 ト イヨ ト イヨ

目

 \leftarrow \Box \rightarrow

④ トイヨト イヨト

目

• Recall the definitions of gcd and lcm.

Þ

- Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.

э

- Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.
- Apply the Euclidean algorithm to compute the gcd of two larger integers.

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

э

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

 \bigcirc c | a and c | b (c is a common divisor of a and b), and

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

- \bullet c | a and c | b (c is a common divisor of a and b), and
- **2** for every common divisor d of a and b, $d \mid c$.

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

- \bullet c | a and c | b (c is a common divisor of a and b), and
- **2** for every common divisor d of a and b, $d \mid c$.

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

- \bigcirc c | a and c | b (c is a common divisor of a and b), and
- **2** for every common divisor d of a and b, $d \mid c$.

Examples

伺 ▶ イヨ ▶ イヨ ▶

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

- \bigcirc c | a and c | b (c is a common divisor of a and b), and
- **2** for every common divisor d of a and b, $d \mid c$.

Examples

$$
\bullet\ gcd(8,12)=4
$$

伺 ▶ イヨ ▶ イヨ ▶

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

- \bullet c | a and c | b (c is a common divisor of a and b), and
- **2** for every common divisor d of a and b, $d \mid c$.

Examples

- $gcd(8, 12) = 4$
- gcd($-35, 20$) = 5

母 > x ヨ > x ヨ >

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

 \bullet c | a and c | b (c is a common divisor of a and b), and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- $gcd(8, 12) = 4$
- gcd($-35, 20$) = 5
- $gcd(a, b) = gcd(b, a)$

伊 ト イミト イモト

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

 \bullet c | a and c | b (c is a common divisor of a and b), and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- $gcd(8, 12) = 4$
- gcd($-35, 20$) = 5
- $gcd(a, b) = gcd(b, a)$
- For any integer $a \neq 0$, gcd $(a, 0) = |a|$

御き メミメメ ミト

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^{+}$ is called a *greatest common divisor* (gcd) of a and b if

 \bullet c | a and c | b (c is a common divisor of a and b), and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- $gcd(8, 12) = 4$
- gcd($-35, 20$) = 5
- $gcd(a, b) = gcd(b, a)$
- For any integer $a \neq 0$, gcd $(a, 0) = |a|$
- $gcd(0, 0)$ is undefined

御き メミメメ ミト

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

Þ

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

 \bigcirc a | c and b | c (c is a common multiple of a and b), and

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

- \bigcirc a | c and b | c (c is a common multiple of a and b), and
- **2** for every positive common multiple d of a and b, $c \leq d$.

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

- \bigcirc a | c and b | c (c is a common multiple of a and b), and
- **2** for every positive common multiple d of a and b, $c \leq d$.

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

- \bigcirc a | c and b | c (c is a common multiple of a and b), and
- **2** for every positive common multiple d of a and b, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

- \bigcirc a | c and b | c (c is a common multiple of a and b), and
- **2** for every positive common multiple d of a and b, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

Examples

•
$$
a = 4, b = 7
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

For any *positive* integers a and b, c ∈ Z ⁺ is called a *least common multiple* (lcm) of a and b if

- \bigcirc a | c and b | c (c is a common multiple of a and b), and
- **2** for every positive common multiple d of a and b, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

Examples

•
$$
a = 4, b = 7
$$

•
$$
a = 20, b = 12
$$

イロト イ押 トイラト イヨト

• By comparing prime factorizations (slow)

骨

 $\,$ $\,$

 $\Xi \rightarrow \rightarrow \Xi \rightarrow$

目

- By comparing prime factorizations (slow)
- By the Euclidean algorithm (fast, easy to do by hand)

同 ト ィミト ィミト

E

The Division Algorithm, Revisited

Theorem

For any integers a *and* b*, where* b > 0*, there exist a unique quotient* q ∈ Z *and remainder* r ∈ Z *such that*

- \bullet a = bq + r and
- **2** 0 $\leq r \leq b$.

э

The Division Algorithm, Revisited

Theorem

For any integers a *and* b*, where* b > 0*, there exist a unique quotient* q ∈ Z *and remainder* r ∈ Z *such that*

- \bullet a = bq + r and
- **2** 0 $\leq r \leq b$.

Claim

For any integers a*,* b*,* q*, and* r*, with* b *positive, if* $a = bq + r$, then $gcd(a, b) = gcd(b, r)$.

④ → → ヨ → → ヨ →

Ξ

The Division Algorithm, Revisited

Theorem

For any integers a *and* b*, where* b > 0*, there exist a unique quotient* q ∈ Z *and remainder* r ∈ Z *such that*

- \bullet a = bq + r and
- **2** 0 $\leq r \leq b$.

Claim

For any integers a*,* b*,* q*, and* r*, with* b *positive, if* $a = bq + r$, then $gcd(a, b) = gcd(b, r)$.

See textbook, Section 4.6, for proof of claim

④ → → ヨ → → ヨ →

Þ

The Euclidean algorithm

Repeatedly apply the division algorithm and the claim

イ母 トイヨ トイヨト

目

The Euclidean algorithm

Repeatedly apply the division algorithm and the claim

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
    return gcd(b, r)
```
同 ト イヨ ト イヨ ト

Ξ

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
    return gcd(b, r)
```
Example $a = 168$, $b = 456$

イロト イ押 トイラト イラト

Þ

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
    return gcd(b, r)
```
Example
\n
$$
a = 168
$$
, $b = 456$
\n $168 = 456 \cdot 0 + 168$

ミト・ミト

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
     return gcd(b, r)
                               Example
                               a = 168, b = 456168 = 456 \cdot 0 + 168456 = 168 \cdot 2 + 120
```
イロト イ押 トイラト イラト

Þ

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
    return gcd(b, r)
```


```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
     return gcd(b, r)
                                Example
                                 a = 168, b = 456168 = 456 \cdot 0 + 168456 = 168 \cdot 2 + 120168 = 120 \cdot 1 + 48120 = 48 \cdot 2 + 24
```
イロト イ押 トイラト イラト

Þ

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0return b
else
     return gcd(b, r)
                                 a = 168, b = 456168 = 456 \cdot 0 + 168456 = 168 \cdot 2 + 120168 = 120 \cdot 1 + 48120 = 48 \cdot 2 + 24
```
 $48 = 24 \cdot 2 + 0$

Example

イロト イ押 トイラト イラト

E.

- • Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.
- Apply the Euclidean algorithm to compute the gcd of two larger integers.