Number Theory: The Euclidean Algorithm

Ian Ludden

Ian Ludden Number Theory: The Euclidean Algorithm

< 回 > < 三 > < 三 >

• Recall the definitions of gcd and lcm.

- Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.

- Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.
- Apply the Euclidean algorithm to compute the gcd of two larger integers.

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

- 1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and
- 2 for every common divisor d of a and b, $d \mid c$.

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

- 1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and
- 2 for every common divisor d of a and b, $d \mid c$.

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

- 1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and
- 2 for every common divisor d of a and b, $d \mid c$.

Examples

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

- 1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and
- 2 for every common divisor d of a and b, $d \mid c$.

Examples

• gcd(8, 12) = 4

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

- 1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and
- 2 for every common divisor d of a and b, $d \mid c$.

Examples

- gcd(8, 12) = 4
- gcd(-35, 20) = 5

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- gcd(8, 12) = 4
- gcd(-35, 20) = 5
- gcd(a, b) = gcd(b, a)

Definition

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

1 $c \mid a$ and $c \mid b$ (c is a common divisor of a and b), and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- gcd(8, 12) = 4
- gcd(-35, 20) = 5
- gcd(a, b) = gcd(b, a)
- For any integer $a \neq 0$, gcd(a, 0) = |a|

For any integers *a* and *b*, with $a \neq 0$ or $b \neq 0$, $c \in \mathbb{Z}^+$ is called a *greatest common divisor* (gcd) of *a* and *b* if

1 $c \mid a \text{ and } c \mid b (c \text{ is a common divisor of } a \text{ and } b)$, and

2 for every common divisor d of a and b, $d \mid c$.

Examples

- gcd(8, 12) = 4
- gcd(-35, 20) = 5
- gcd(a, b) = gcd(b, a)
- For any integer $a \neq 0$, gcd(a, 0) = |a|
- gcd(0,0) is undefined

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

- 1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and
- 2 for every positive common multiple *d* of *a* and *b*, $c \leq d$.

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

- 1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and
- 2 for every positive common multiple *d* of *a* and *b*, $c \leq d$.

Least Common Multiple

Definition

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

- 1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and
- **2** for every positive common multiple *d* of *a* and *b*, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Least Common Multiple

Definition

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

- 1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and
- **2** for every positive common multiple *d* of *a* and *b*, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

Examples

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Least Common Multiple

Definition

For any *positive* integers *a* and *b*, $c \in \mathbb{Z}^+$ is called a *least common multiple* (lcm) of *a* and *b* if

- 1 $a \mid c$ and $b \mid c$ (c is a common multiple of a and b), and
- **2** for every positive common multiple *d* of *a* and *b*, $c \leq d$.

Theorem

For all $a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$.

Examples

イロト イポト イヨト イヨト

• By comparing prime factorizations (slow)

- By comparing prime factorizations (slow)
- By the Euclidean algorithm (fast, easy to do by hand)

The Division Algorithm, Revisited

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- 1 a = bq + r and
- **2** $0 \le r < b$.

The Division Algorithm, Revisited

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- 1 a = bq + r and
- **2** $0 \le r < b$.

Claim

For any integers a, b, q, and r, with b positive, if a = bq + r, then gcd(a, b) = gcd(b, r).

The Division Algorithm, Revisited

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- 1 a = bq + r and
- **2** $0 \le r < b$.

Claim

For any integers a, b, q, and r, with b positive, if a = bq + r, then gcd(a, b) = gcd(b, r).

See textbook, Section 4.6, for proof of claim

< 回 ト < ヨ ト < ヨ ト

The Euclidean algorithm

Repeatedly apply the division algorithm and the claim

< 回 > < 三 > < 三 > >

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

何トイヨトイヨト

э

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

Example a = 168, b = 456

イロト イポト イヨト イヨト

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

Example
<i>a</i> = 168, <i>b</i> = 456
$168 = 456 \cdot 0 + 168$

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

Example
<i>a</i> = 168, <i>b</i> = 456
$168 = 456 \cdot 0 + 168$
$456 = 168 \cdot 2 + 120$

A E > A E >

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

Example	
<i>a</i> = 168, <i>b</i> = 456	
$168 = 456 \cdot 0 + 168$	
$456 = 168 \cdot 2 + 120$	
$168 = 120 \cdot 1 + 48$	

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
```

Example
<i>a</i> = 168, <i>b</i> = 456
$168 = 456 \cdot 0 + 168$
$456 = 168 \cdot 2 + 120$
$168 = 120 \cdot 1 + 48$
$120 = 48 \cdot 2 + 24$

```
procedure gcd(a, b)
r := remainder(a, b)
if r == 0
return b
else
return gcd(b, r)
1
```

Example	
a = 168, b	= 456
168 = 456 ·	0 + 168
456 = 168 ·	2 + 120
168 = 120 ·	1 + 48
$120 = 48 \cdot 2$	2 + 24
$48 = 24 \cdot 2$	+ 0

- Recall the definitions of gcd and lcm.
- Describe the Euclidean algorithm and reproduce its pseudocode.
- Apply the Euclidean algorithm to compute the gcd of two larger integers.