Introduction to Number Theory

lan Ludden

By the end of this lesson, you will be able to:

By the end of this lesson, you will be able to:

• Recall basic definitions from number theory.

By the end of this lesson, you will be able to:

- Recall basic definitions from number theory.
- Apply the definition of "divides" in direct proofs.

By the end of this lesson, you will be able to:

- Recall basic definitions from number theory.
- Apply the definition of "divides" in direct proofs.
- State the Division Algorithm theorem.

What is number theory?

What is number theory?

Definition

Number theory is the study of integers and integer-valued functions.

What is number theory?

Definition

Number theory is the study of integers and integer-valued functions.

Quote

"Mathematics is the queen of the sciences, and number theory is the queen of mathematics." – Gauss

Number theory applications:

Number theory applications:

• RSA Encryption

Number theory applications:

- RSA Encryption
- Bitcoin

Number theory applications:

- RSA Encryption
- Bitcoin

Source: https://xkcd.com/247/

Definition

An integer *n* is *even* if there exists an integer *m* such that n = 2m.

Definition

An integer n is even if there exists an integer m such that n = 2m. An integer n is odd if there exists an integer m such that n = 2m + 1.

Definition

An integer n is even if there exists an integer m such that n = 2m. An integer n is odd if there exists an integer m such that n = 2m + 1.

Examples

• 0 is even, because $0 = 2 \cdot 0$

Definition

An integer n is even if there exists an integer m such that n = 2m. An integer n is odd if there exists an integer m such that n = 2m + 1.

- 0 is even, because $0 = 2 \cdot 0$
- 173 is odd, because $173 = 2 \cdot 86 + 1$

Definition

An integer n is even if there exists an integer m such that n = 2m. An integer n is odd if there exists an integer m such that n = 2m + 1.

- 0 is even, because $0 = 2 \cdot 0$
- 173 is odd, because $173 = 2 \cdot 86 + 1$
- -128 is even, because -128 = 2(-64)

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

Examples

• 3 | 6

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

- 3 | 6
- 6∤3

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

- 3 | 6
- 6 ∤ 3
- 51 | 0

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

Examples

- 3 | 6
- 6 ∤ 3
- 51 | 0

• 0 | 0

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

- 3 | 6
- 6 ∤ 3
- 51 | 0

- 0 | 0
- (−5) | 30

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

- 3 | 6
- 6 ∤ 3
- 51 | 0

- 0 | 0
- **●** (−5) | 30
- 11 | (−121)

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

- 3 | 6
- 6 ∤ 3
- 51 | 0

- 0 | 0
- **●** (−5) | 30
- 11 | (−121)

Definition

For integers a and b, we say a divides b, written $a \mid b$, if there exists an integer n such that b = an.

We call a a factor of b and b a multiple of a.

Examples

- 3 | 6
- 6 ∤ 3
- 51 | 0

- 0 | 0
- **●** (−5) | 30
- 11 | (−121)

Warning

Tempting: "a divides b if $\frac{b}{a}$ is an integer." **Don't do this.** Breaks for a = 0; also, see Section 4.3 of the textbook.



Direct proofs using divides

Example

Claim: For all integers m and n, if m is even and $m \mid n$, then n is even.

Direct proofs using divides

Example

Claim: $\forall p, q, r \in \mathbb{Z}$, $(p \mid q) \land (q \mid r) \rightarrow (p \mid r)$.

(Transitive property of divides.)

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- **2** $0 \le r < b$.

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- **2** $0 \le r < b$.

Examples

• a = 173, b = 5

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $a \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}$ such that

- **2** $0 \le r < b$.

- a = 173, b = 5
- a = -20, b = 4

Theorem

For any integers a and b, where b > 0, there exist a unique quotient $a \in \mathbb{Z}$ and remainder $a \in \mathbb{Z}$ such that

- **2** $0 \le r < b$.

- a = 173, b = 5
- a = -20, b = 4
- a = 12, b = 97

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Recall basic definitions from number theory.
- Apply the definition of "divides" in direct proofs.
- State the Division Algorithm theorem.