Final Example Rubrics

Table 1: Inequality claim (12 points)

Criteria	Mastered (3)	Proficient (2)	Novice (1)	Absent (0)
Logical flow	proof assumes	small issue with	large issue with	largely back-
	hypothesis to be	logical order	logical order but	wards
	true and reaches	(ends one step	not entirely back-	
	conclusion; in	before conclu-	wards	
	logical order	sion)		
Handling in-	chain of equa-	small issue with	missing an im-	inequalities han-
equalities	tions is handled	chain of equa-	portant bound	dled completely
	correctly; any	tions		incorrectly
	extra bounding is			
	done correctly			
Algebraic details	all other alge-	other minor alge-	other major alge-	algebra com-
	braic details	braic issue	braic issue	pletely incorrect
	correct			
Overall commu-	good connector	slightly difficult	multiple style is-	very difficult to
nication and style	words; easy to	to follow	sues	follow
	follow			

DO NOT DO AN ENTIRE INEQUALITY INDUCTION PROOF!!! You will lose at least 2 points.

Table 2: Onto or one-to-one proof (10 points)

Criteria	Mastered (4)	Proficient (3)	Novice (2-1)	Absent (0)
Proof outline	the proof outline	small bug in	many bugs, or	completely incor-
	matches the cor-	proof outline (no	outline not in log-	rect, OR proved
	rect definition	variable declara-	ical order	onto when asking
		tion, etc.)		for one to one or
				vice versa
Criteria	Mastered (3)	Proficient (2)	Novice (1)	Absent (0)
Details (struc-	proof is able to	missing some al-	large algebra or	unable to reach
tural/algebraic)	get to the con-	gebra or small	structural error	conclusion be-
	clusion via the	structural error		cause proof
	important struc-			doesn't use ma-
	tural/algebraic			jor facts to reach
	fact (e.g., an-			it
	other function g			
	is onto)			
Style and clarity	easy to follow	slightly hard	difficult to follow	very difficult to
		to follow, not	due to too much	follow, no con-
		enough connector	unnecessary de-	nector words
		words	tail	

Table 3: Set inclusion proof (10 points)

Criteria	Mastered (4)	Proficient (3)	Novice (2-1)	Absent (0)
Proof outline	recommended	missing variable	some issue with	proof largely
	proof technique	declaration	proof outline	backwards or
	is used, and be-			does not follow
	gins with variable			outline at all
	declaration			
Criteria	Mastered (3)	Proficient (2)	Novice (1)	Absent (0)
Details (defini-	all algebra is cor-	small set defi-	large algebra or	set elements or
tions/algebra)	rect and set ele-	nition/algebra	definition error	algebra com-
	ments follow def-	error		pletely incorrect
	initions			
Style and clarity	easy to follow	slightly hard	difficult to follow	very difficult to
		to follow, not	due to too much	follow, no con-
		enough connector	unnecessary de-	nector words
		words	tail	

Table 4: Tree Induction (16 points)

Criteria	Mastered (2)	Proficient (1)	Absent (0)	
Base case(s)	checks correct	either checks in-	neither checks	
	values and shows	correct values or	correct values	
	some work	does not show	nor shows work;	
		work	or missing	
Inductive hy-	bounds (strong	incorrect bounds	missing or incor-	
pothesis	IH) and claim	or claim (weak	rect bounds and	
	correct, explicitly	IH)	claim	
	stated			
Case structure	cases all covered	small issue with	important case(s)	
		case structure	missing	
Details	algebra or other	small issue with	large issue with	
	details correct;	details, or stops	details	
	conclusion is	one step before		
	reached	conclusion		
Style and clarity	excellent style,	poor formatting	very difficult to	
	good connector	or use of words	follow	
	words and for-			
	matting			
Criteria	Mastered (3)	Proficient (2)	Novice (1)	Absent (0)
Goal and division	larger problem	goal off by one,	small issue with	large issue with
of problem	split correctly	but split cor-	split	split (including
	into smaller	rectly		missing)
	problem(s) and			
	goal matches IH			
Applying IH	IH applied where	IH applied but	missing some	IH never applied
	necessary with	small issue with	case where IH	
	correct values	values, or doesn't	must be applied	
	plugged in	call out IH		

 $\it Note:$ Any major issues with dividing the problem will typically also result in errors and points off in other sections (applying IH and details).