Sets and Modular Arithmetic Tutorial Problems

1. Congruence classes of perfect squares

a) Compute $\left\{\left[x^{2}\right]_{4} \mid x \in \mathbb{Z}\right\}$. (That is, rewrite the set into a simpler form that lists all the elements explicitly.)
b) Notice that, for any $k,[a]_{k} \neq[b]_{k}$ implies $a \neq b$. (Do you see why this is true?) Using this fact and the result from part (a), prove that for all integers x and $y, x^{2}+y^{2} \neq 4000003$. (Do not use a calculator.)

2. Sets warmup

Consider the following sets: $A=\{2\}, B=\{A,\{4,5\}\}, C=B \cup \emptyset, D=B \cup\{\emptyset\}$.
a) Which of the sets have more than two elements?
b) Which of the following are true:

$$
\begin{gathered}
2 \in A, 2 \in B,\{2\} \in A,\{2\} \in B, \emptyset \in C, \emptyset \in D \\
\emptyset \subseteq A,\{2\} \subseteq A,\{2\} \subseteq B
\end{gathered}
$$

3. Cartesian product

a) Find an example of sets A and B such that $A \times B=B \times A$. Then find a second such pair of sets; try to make this second example feel different from your first, e.g. don't just rename some elements.
b) Consider the following incomplete statement:

$$
\text { For sets } A \text { and } B \text {, if } \quad \text { then } A \times B \neq B \times A \text {. }
$$

Create a true claim by filling in the blank with a statement about A and B that does not mention Cartesian products. Try to make the strongest possible claim, i.e. ideally your statement should still be true even if we replaced the "if-then" by an "if and only if". If you have extra time, also prove your claim. Hint: two sets are not-equal if and only if there exists an element that is in one but not the other.

