Collections of Sets - Additional Tutorial Problems

Partitions

a) Let $A=\{2,5,7,8,13,21\}$, and define $p: A \rightarrow \mathbb{P}(A)$ by $p(n)=\{s \in A \mid \operatorname{gcd}(s, n) \neq 1\}$. Let $M=\{p(s) \mid s \in A\}$.

- What are the elements of M ?
- Is M a partition of A ? Explain why or why not.
b) Consider this graph on vertex set $X=\{A, B, C, D\}$:

Define $D: N \rightarrow \mathbb{P}(X)$ by $D(n)=\{v \in X \mid$ degree of node v is $n\}$. Let $S=\{D(n) \mid n \in$ $\mathbb{N}\}=\{D(0), D(1), D(2), \ldots\}$.

- What are the elements of S ?
- Is S a partition of X ? Explain why or why not.

Set-valued functions

Define $f: \mathbb{P}(\mathbb{Z}) \rightarrow \mathbb{P}(\mathbb{Z})$ by $f(S)=\{n / 2 \mid n \in S$ and n is even $\}$.
a) Is f one-to-one?
b) Is f onto?

Counting

Let n, k be integers with $n \leq k$. Compute the number of positive integer solutions to the equation $\sum_{i=1}^{n} x_{i}=k$. Hint: this is similar to problem 17.5a.

