
Honors Homework 2

Discrete Structures, CS 173, Spring 2019

Due Friday, March 29

This assignment has you build some simple functions using lists and map-
ping operations, strings and characters, and more recursive numerical func-
tions. This will get you set up to do the third assignment, which implements
a simple version of RSA encoding.

As with the first assignment, you will use moodle to submit your work.
Submit two files:

• A file (extension rkt) containing all your functions. Include enough
comments that I can easily understand what you did.

• A file showing sample inputs and outputs for your functions. Find
inputs and outputs that clearly illustrate that the code is working right.

Please submit the two files separately. Do not bundle them into a tar/zip
archive.

Please submit all your input/output examples in one file. If necessary,
combine individual items (e.g. screenshots) into one document.

This is a solo assignment. Do not share code or detailed designs with
other students.

1 Basic list operations

There is information on basic list operations in section 8 of the Quick intro-
duction from the first assignment, and in the following part of the Racket
Guide for some basic list operations.

http://docs.racket-lang.org/guide/Lists__Iteration__and_Recursion.html



Experiment with the map function from the Quick tutorial and the filter
function from the Racket Guide.

Also check out the Racket documentation on strings and characters:

https://docs.racket-lang.org/reference/strings.html

https://docs.racket-lang.org/reference/characters.html

Notice that the function string->list converts a string to a list of charac-
ters. Use this function, and filter and map, to write a function that normalizes
a string:

• Non-alphabetic characters are removed.

• All letters are converted to uppercase.

The function should take a string as input and output a new string.

2 Character encoding

Build a function (perhaps calling other functions) that takes a string as input,
normalizes the string as in the previous section, and returns a new version
of the string as encoded by the ROT13 cipher.

Some hints:

• Look up the ROT13 substitution cipher on Wikipedia.

• In the Racket documentation on characters and strings (see previous
section), find the function char->integer.

• First build functions that do only part of the task, e.g. convert alpha-
betic characters into numbers in the range 1-26.

3 Recursive powers

Build a recursive function that takes integers a and n as input and produces a
list containing the first n powers of a. Your function should create the larger
powers by multiplying smaller ones by a. Do not call an exponentiation
function (built-in or your own). You can assume that n is a non-negative
integer.



When building this kind of list-based function, you should rely on prim-
itives such as car, cdr, cons and derived functions such as append. Do not
use functions such as list-ref which effectively treat the list as an array. Also,
do not supply your recursive function with extra input parameters.

You should submit two functions. The first version should output the list
in reverse numerical order (largest element first). The second version should
output the list in numerical order (smallest element first). Both versions
should create the list in the right order. Do not write one version and then
use a list reversal function to create the other.

4 Modular arithmetic

Recall the “repeated squaring” method used in class to raise an integer a to
selected large powers, specifically the powers that are themselves powers of
2. We started with a

1 = a, a2 and then, for each i, computed a
2
i+1

as the
square of a2

i

.

In racket, you can use (remainder a k) to find the remainder of a divided
by k. Build a recursive function that computes a2

i

for the first n values of i.
Output them in a list, in increasing numerical order. Then modify it to take
an additional input and compute a list of the first n values of remainder(a2

i

,
k). Your submission should include both versions.

For the second (remainder mod k) version, you should keep intermediate
results small by taking the remainder mod k after each major arithmetic
step (e.g. after multiplying one number by another). Do not compute all the
powers a2

i

and then map remainder across the list of results.


	Basic list operations
	Character encoding
	Recursive powers
	Modular arithmetic

