1. (8 points) Consider the following grammar G, with start symbol S and terminals a and b.

$$S \rightarrow a\,S\,a \mid b\,S\,b \mid a\,S\,b \mid b\,S\,a \mid a \mid b$$

Amy claims that this generates all non-empty strings containing a’s and/or b’s. Is this correct? Justify your answer.

Solution:

Amy is wrong. This grammar only generates strings of odd length.

2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a full and complete 5-ary tree of height h

- 5^h []
- $\leq 5^h$ []
- $\geq 5^h$ []
- $5^{h+1} - 1$ []

The level of a leaf node in a full and complete binary tree of height h.

- 0 []
- 1 []
- $h - 1$ []
- $\leq h$ []
- h []
1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string $abba$ that match this grammar.

$$S \rightarrow SS \mid aS \mid Sa \mid b$$

Solution:

2. (4 points) Check the (single) box that best characterizes each item.

A full m-ary tree with i internal nodes has $mi + 1$ nodes total.
always ✓ sometimes never

A binary tree of height h has at least $2^{h+1} - 1$ nodes.
true false ✓
1. (8 points) Consider the following grammar G

$$S \rightarrow S \ b \ S \ | \ a \ | \ c \ d$$

S is the only start symbol. The terminal symbols are a, b, c, and d.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

aaacd

Solution: In grammar G, making strings with more than two leaves requires using the first rule (SbS) which produces a b. This string can’t be generated by G because it is more than two characters long with no b in it.

bbbbb

Solution: Impossible. Since the only terminal in the string is b, the only rule we could be using is $S \rightarrow SbS$. But each time we use this rule, the count of S nodes without children increases by one. This is a problem, since S nodes can’t be leaves.

2. (4 points) Check the (single) box that best characterizes each item.

The mathematical symbol for an empty (zero-length) string

- \emptyset
- e
- ϵ
- NULL

Number of bit strings of length $\leq k$.

- 2^k
- $2^k - 1$
- 2^{k-1}
- $2^{k+1} - 1$
1. (8 points) Min’s virus detection code needs to generate all strings of the form $a^n b^n$. That is, all strings that consist of a sequence of one or more a’s followed by the same number of b’s. Write a context-free grammar G that will do this.

Solution:

G has start symbol S, terminals a and b, and the following rules:

$$S \rightarrow a \ S \ b \mid a \ b$$

2. (4 points) Check the (single) box that best characterizes each item.

The number of nodes in a binary tree of height h

- $\geq 2^h$ []
- $2^h+1 - 1$ []
- $\leq 2^{h+1} - 1$ []
- $\geq 2^{h+1} - 1$ []

A tree node is a descendent of itself.

- always []
- sometimes []
- never []
1. (8 points) Consider the following grammar G

 $S \rightarrow a\ S\ b \ | \ b\ S\ b \ | \ c$

 S is the only start symbol. The terminal symbols are a, b, and c.

 Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

 ababb

 Solution:

 This is impossible. In strings produced by G, the middle character must be a c.

 babcbbb

 Solution:

2. (4 points) Check the (single) box that best characterizes each item.

 The level of the root node in a tree of height h.

 A tree node is a proper ancestor of itself.

 always □ sometimes □ never □
1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, and c. Circle the trees that match the grammar.

$$S \rightarrow a \ N \ a \mid b \ N \ b \mid a \mid b$$

$$N \rightarrow S \ S \mid c$$

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at least $2^h - 1$ nodes.
true [] false [√]

A full m-ary tree with i internal nodes has $mi - 1$ nodes total.
$mi - 1$ [] mi [] $mi + 1$ [√] $\leq mi + 1$ []
1. (8 points) Consider the following grammar G

$$
S \rightarrow a \ S \ b \ | \ b \ S \ b \ | \ a \ | \ b
$$

S is the only start symbol. The terminal symbols are a and b.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

bababbb

Solution:

- S
 - b
 - S
 - b
- a
 - S
 - b
- b
 - S
 - b
 - a

aaaab

Solution:

This is impossible. In a string produced by grammar G, all characters after the middle of the string must be b’s.

2. (4 points) Check the (single) box that best characterizes each item.

- The number of leaves in a binary tree of height h
 - 2^h
 - $2^{h+1} - 1$
 - $\geq 2^h$
 - $\leq 2^h$
 - \square

- The number of paths between two distinct nodes in an n-node tree. Paths in opposite directions count as the same.
 - n
 - $2n$
 - $\frac{n(n-1)}{2}$
 - n^2
 - $\frac{n(n+1)}{2}$
 - \square
 - \square
 - \square
 - \square
1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

$$
S \rightarrow a\ N\ b \mid a\ N\ c \mid a \\
N \rightarrow S\ S \mid d
$$

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a tree of height h.

- $\leq h$ \[\square\] h \[\square\] $h+1$ \[\square\]

- $2h$ \[\square\] $\leq 2h$ \[\checkmark\]

The number of nodes in a full complete binary tree of height h.

- $\geq 2^h$ \[\square\] $2^{h+1} - 1$ \[\checkmark\]

- $\leq 2^{h+1} - 1$ \[\square\] $\geq 2^{h+1} - 1$ \[\square\]