Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (8 points) Consider the following grammar G, with start symbol S and terminals a and b.

$$S \rightarrow a S a \mid b S b \mid a S b \mid b S a \mid a \mid b$$

Amy claims that this generates all non-empty strings containing a's and/or b's. Is this correct? Justify your answer.

2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a $< 5^{h}$ full and complete 5-ary tree of height h

The level of a leaf node in a full and complete binary tree of height h.

1 h-1

 $\leq h$

Name:												
NetID:			_	$\mathrm{L}\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string abba that match this grammar.

$$S \rightarrow SS \mid aS \mid Sa \mid b$$

2. (4 points) Check the (single) box that best characterizes each item.

A full m -ary tree with i internal nodes has $mi+1$ nodes total.	always	sometimes	never
A binary tree of height h has at least $2^{h+1} - 1$ nodes.	true	false	

of

Name:												
NetID:		_	$L\epsilon$	ecture:		\mathbf{A}	\mathbf{B}					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(1	Consider the following $S \ b \ S \ \ a \ \ c \ c$	0 0	mar (\widehat{G}								
S is the onl	y start symbol.	The terminal	l sym	bols ar	e a, b,	c, and	d.					
	o sequences of leathis sequence of			_					~			
aaacd					bbbbb)						
2. (4 points) (Check the (single)) box that be	est ch	aracte	rizes ea	ich ite	m.					
	matical symbol : zero-length) strin	(λ		e		ϵ		1	NULI			
Number of length $\leq k$.	bit strings of	2^k		$2^{k} - 1$		2^{h}	x-1		2	k+1 _	1 [

Name:

NetID: Lecture:

 \mathbf{A} \mathbf{B}

Discussion:

Thursday Friday 9 **10** 11 **12**

1

2 3 4 5

6

1. (8 points) Min's virus detection code needs to generate all strings of the form $a^n b^n$. That is, all strings that consist of a sequence of one or more a's followed by the same number of b's. Write a context-free grammar G that will do this.

2. (4 points) Check the (single) box that best characterizes each item.

The number of nodes in a binary tree of height h

 $\geq 2^h$

 $2^{h+1}-1$

 $\leq 2^{h+1} - 1$

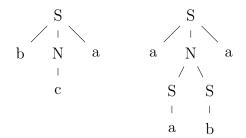
 $\geq 2^{h+1} - 1$

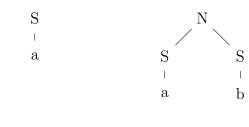
A tree node is a descendent of itself.

always

sometimes

never


Name:												
NetID:			_	Lecture:			\mathbf{A}	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
S-	Consider the foll $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c			e a, b,	and c .						
	o sequences of lea this sequence of			_	•				-	•		
ababb				bab	cbbb							
2. (4 points) (Check the (single)	box that be	est ch	aracter	izes ea	ach ite	m.					
The level of in a tree of	the root node height h .		1		h-1	1]	h			h+1	
A tree node of itself.	e is a proper and	eestor	alwa	ys		somet	imes			never		


Name:_____

Lecture: \mathbf{B}

Discussion: Thursday Friday 9 **12** $\mathbf{2}$ 3 **10** 11 1 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, and c. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at least $2^h - 1$ nodes.

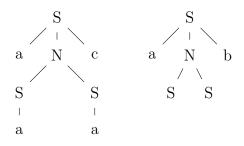
true

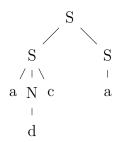
false

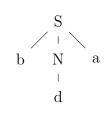
A full m-ary tree with iinternal nodes has _____ nodes total.

mi-1

mi + 1


 $\leq mi + 1$


Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
` - /	Consider the following $a \ S \ b \ \ b \ S \ b$		mar (G								
S is the on	ly start symbol.	The terminal	l sym	bols ar	e a an	d b.						
	vo sequences of lea this sequence of			_								
bababbb					aaaa	ıb						
2. (4 points) (Check the (single)) box that be	est ch	naracte:	rizes e	ach ite	m.					
	er of leaves in a of height h	2^h		2^{h+1} —	1		$\geq 2^h$			$\leq 2^h$	ı	
two distinct tree. Paths	er of paths between the paths and ender in an ender in opposite count as the same	ode "	n-1)		n []		$\frac{n(n-1)}{2}$ $\frac{n(n+1)}{2}$	_			


Lecture: \mathbf{B}

Discussion: Thursday Friday **12** $\mathbf{2}$ 3 9 **10** 11 1 5 6 4

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a tree of height h.

$$\leq h$$
 h $h+1$ $2h$ $\leq 2h$ h

The number of nodes in a full complete binary tree of height h

$$\geq 2^{h}$$
 $2^{h+1} - 1$ $\leq 2^{h+1} - 1$ $\geq 2^{h+1} - 1$