Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (8 points) Consider the following grammar $G$, with start symbol $S$ and terminals $a$ and $b$.

$$
S \rightarrow a S a|b S b| a S b|b S a| a \mid b
$$

Amy claims that this generates all non-empty strings containing a's and/or b's. Is this correct? Justify your answer.
2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a full and complete 5-ary tree of height $h$

The level of a leaf node in a full and complete binary tree of height $h$.
0 $\square$
1 $\square$
$h-1$
 $\leq h$ $\square$
$h \quad \square$

Name:
NetID:

## Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right)$

1. (8 points) Here is a grammar with start symbol $S$ and terminal symbols $a$ and $b$. Draw three parse trees for the string abba that match this grammar.

$$
S \rightarrow S S|a S| S a \mid b
$$

2. (4 points) Check the (single) box that best characterizes each item.

A full $m$-ary tree with $i$ internal nodes has $m i+1$ nodes total.

$$
\text { always } \quad \square \text { sometimes } \quad \square \text { never } \quad \square
$$

A binary tree of height $h$ has at least $2^{h+1}-1$ nodes.
true
$\square$ false $\square$

Name: $\qquad$
NetID:
Lecture: A B

## Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (8 points) Consider the following grammar $G$

$$
S \rightarrow S b S|a| c d
$$

$S$ is the only start symbol. The terminal symbols are $a, b, c$, and $d$.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why $G$ cannot generate this sequence of leaf labels.
aaacd
bbbbb
2. (4 points) Check the (single) box that best characterizes each item.

The mathematical symbol for an empty (zero-length) string
$\square$
e $\square$
$\epsilon$ $\square$

NULL $\square$

Number of bit strings of length $\leq k$.

$2^{k-1} \quad \square$
$2^{k+1}-1$ $\square$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (8 points) Min's virus detection code needs to generate all strings of the form $a^{n} b^{n}$. That is, all strings that consist of a sequence of one or more a's followed by the same number of b's. Write a context-free grammar G that will do this.
2. (4 points) Check the (single) box that best characterizes each item.


A tree node is a descendent of itself.

never $\square$

Name: $\qquad$
NetID: Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (8 points) Consider the following grammar $G$

$$
S \rightarrow a S b|b S b| c
$$

$S$ is the only start symbol. The terminal symbols are $a, b$, and $c$.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why $G$ cannot generate this sequence of leaf labels.
ababb babcbbb
2. (4 points) Check the (single) box that best characterizes each item.


A tree node is a proper ancestor of itself.


Name:
NetID:
Lecture: A B

## Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (8 points) Here is a grammar with start symbol $S$ and terminal symbols $a, b$, and $c$. Circle the trees that match the grammar.

$$
\begin{aligned}
S & \rightarrow a N a|b N b| a \mid b \\
N & \rightarrow S S \mid c
\end{aligned}
$$


2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height $h$ has at least $2^{h}-1$ nodes. true $\square$ false


A full $m$-ary tree with $i$ internal nodes has nodes total.

mi

$m i+1$ $\square$

$$
\leq m i+1
$$

$\square$

Name:
NetID:

## Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (8 points) Consider the following grammar $G$

$$
S \rightarrow a S b|b S b| a \mid b
$$

$S$ is the only start symbol. The terminal symbols are $a$ and $b$.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why $G$ cannot generate this sequence of leaf labels.
bababbb aaaab
2. (4 points) Check the (single) box that best characterizes each item.

The number of leaves in a binary tree of height $h$

$$
2^{h} \square \quad 2^{h+1}-1 \quad \geq 2^{h} \square \quad \leq 2^{h} \square
$$

The number of paths between two distinct nodes in an $n$-node tree. Paths in opposite directions count as the same.

$$
\begin{array}{lllll}
n & \square & 2 n & \frac{n(n-1)}{2} & \square \\
n(n-1) & \square & n^{2} & \square & \frac{n(n+1)}{2}
\end{array}
$$

Name:
NetID:
Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (8 points) Here is a grammar with start symbol $S$ and terminal symbols $a, b, c$, and $d$. Circle the trees that match the grammar.

$$
\begin{aligned}
S & \rightarrow a N b|a N c| a \\
N & \rightarrow S S \mid d
\end{aligned}
$$




2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a tree of height $h$.

$$
\leq h \quad \square \quad h \quad \square \quad h+1 \quad \square
$$

$$
2 h \quad \square \quad 2 h \quad \square
$$

The number of nodes in a

$$
\begin{array}{lll}
\geq 2^{h} & \square & 2^{h+1}-1 \\
\leq 2^{h+1}-1 & \square & \geq 2^{h+1}-1 \\
\hline
\end{array}
$$ full complete binary tree of height $h$

