Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
(10 points) Suppose we have a function f defined (for n a power of 4) by

$$
\begin{aligned}
& f(1)=0 \\
& f(n)=2 f(n / 4)+n \text { for } n \geq 4
\end{aligned}
$$

Your partner has already figured out that

$$
f(n)=2^{k} f\left(n / 4^{k}\right)+n \sum_{p=0}^{k-1} 1 / 2^{p}
$$

Finish finding the closed form for $f(n)$ assuming that n is a power of 4 . Show your work and simplify your answer. Recall that $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$.

Solution: To find the value of k at the base case, set $n / 4^{k}=1$. Then $n=4^{k}$, so $k=\log _{4} n$. Notice also that $2^{\log _{4} n}=2^{\log _{2} n \log _{4} 2}=n^{1 / 2}=\sqrt{n}$

Substituting this into the above, we get

$$
\begin{aligned}
f(n) & =2^{\log _{4} n} f(1)+n \sum_{p=0}^{\log _{4} n-1} 1 / 2^{p} \\
& =0+n\left(2-\frac{1}{2^{\log _{4} n-1}}\right) \\
& =n\left(2-\frac{2}{2^{\log _{4} n}}\right)=n\left(2-\frac{2}{\sqrt{n}}\right)=2(n-\sqrt{n})
\end{aligned}
$$

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
(10 points) Suppose we have a function F defined (for n a power of 2) by

$$
\begin{aligned}
& F(2)=c \\
& F(n)=F(n / 2)+n \text { for } n \geq 4
\end{aligned}
$$

Your partner has already figured out that

$$
F(n)=F\left(n / 2^{k}\right)+\sum_{i=0}^{k-1} n \frac{1}{2^{i}}
$$

Finish finding the closed form for F. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, we need to set $n / 2^{k}=2$. This means that $n=2 \cdot 2^{k}$. So $n=2^{k+1}$. So $k+1=\log n$. So $k=\log n-1$. Substituting this value into the above equation, we get

$$
\begin{aligned}
F(n) & =T\left(n / 2^{k}\right)+\sum_{i=0}^{k-1} n \frac{1}{2^{i}}=F(2)+\sum_{i=0}^{\log n-2} n \frac{1}{2^{i}} \\
& =c+n \sum_{i=0}^{\log n-2} \frac{1}{2^{i}}=c+n\left(2-\frac{1}{2^{\log n-2}}\right) \\
& =c+n\left(2-\frac{1}{2^{\log n} \cdot 2^{-2}}\right)=c+n\left(2-\frac{4}{2^{\log n}}\right) \\
& =c+n\left(2-\frac{4}{n}\right)=c+2 n-4
\end{aligned}
$$

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (8 points) Suppose we have a function f defined by

$$
\begin{aligned}
& f(0)=f(1)=3 \\
& f(n)=5 f(n-2)+d, \text { for } n \geq 2
\end{aligned}
$$

where d is a constant. Express $f(n)$ in terms of $f(n-6)$ (where $n \geq 6$). Show your work and simplify your answer. You do not need to find a closed form for $f(n)$.

Solution:

$$
\begin{aligned}
f(n) & =5 f(n-2)+d \\
& =5(5(f(n-4)+d)+d) \\
& =5(5(5(f(n-6)+d)+d)+d) \\
& =5^{3} f(n-6)+(25+5+1) d \\
& =5^{3} f(n-6)+31 d
\end{aligned}
$$

2. (2 points) Check the (single) box that best characterizes each item.

The chromatic number of the 4-dimensional hypercube Q_{4}
2

3

$4 \square$
5 \square

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
(10 points) Suppose we have a function f defined (for n a power of 4) by

$$
\begin{aligned}
f(1) & =0 \\
f(n) & =2 f(n / 4)+n \text { for } n \geq 4
\end{aligned}
$$

Express $f(n)$ in terms of $f\left(n / 4^{13}\right)$ (assuming n is large enough that this input hasn't reached the base case). Express your answer using a summation and show your work. Do not finish the process of finding the closed form for $f(n)$.

Solution:

$$
\begin{aligned}
f(n) & =2 f(n / 4)+n \\
& =2\left(2 f\left(n / 4^{2}\right)+n / 4\right)+n \\
& =2\left(2\left(2 f\left(n / 4^{3}\right)+n / 4^{2}\right)+n / 4\right)+n \\
& \left.\left.=2^{3} f\left(n / 4^{3}\right)+n / 2^{2}\right)+n / 2\right)+n \\
& =2^{k} f\left(n / 4^{k}\right)+n \sum_{p=0}^{k-1} 1 / 2^{p} \\
& =2^{13} f\left(n / 4^{13}\right)+n \sum_{p=0}^{12} 1 / 2^{p}
\end{aligned}
$$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$
\begin{aligned}
& g(1)=c \\
& g(n)=3 g(n / 3)+n \text { for } n \geq 3
\end{aligned}
$$

Express $g(n)$ in terms of $g\left(n / 3^{3}\right)$ (where $n \geq 27$). Show your work and simplify your answer. You do not need to find a closed form for $g(n)$.
Solution:

$$
\begin{aligned}
g(n) & =3 g(n / 3)+n \\
& =3(3 g(n / 9)+n / 3)+n \\
& =3(3(3 g(n / 27)+n / 9)+n / 3)+n \\
& =27 g(n / 27)+n+n+n \\
& =27 g(n / 27)+3 n
\end{aligned}
$$

2. (2 points) Check the (single) box that best characterizes each item.

The number of nodes in the 4-dimensional hypercube Q_{4} \square 16

$32 \quad \square$
64

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(10 points) Suppose we have a function g defined (for n a power of 4) by

$$
\begin{aligned}
& g(1)=c \\
& g(n)=2 g(n / 4)+n \text { for } n \geq 4
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=2^{k} g\left(n / 4^{k}\right)+n \sum_{p=0}^{k-1} \frac{1}{2^{p}}
$$

Finish finding the closed form for $g(n)$ assuming that n is a power of 4 . Show your work and simplify your answer. Recall that $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$.

Solution: To find the value of k at the base case, set $n / 4^{k}=1$. Then $n=4^{k}$, so $k=\log _{4} n$. Notice also that $2^{\log _{4} n}=2^{\log _{2} n \log _{4} 2}=n^{1 / 2}=\sqrt{n}$

Substituting this into the above, we get

$$
\begin{aligned}
g(n) & =2^{\log _{4} n} \cdot c+n \sum_{p=0}^{\log _{4} n-1} \frac{1}{2^{p}} \\
& =2^{\log _{4} n} \cdot c+n\left(2-\frac{1}{2^{\log _{4} n-1}}\right) \\
& =c \sqrt{n}+n\left(2-\frac{2}{\sqrt{n}}\right) \\
& =c \sqrt{n}+2 n-2 \sqrt{n} \\
& =2 n+(c-2) \sqrt{n}
\end{aligned}
$$

Name: \qquad
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$
\begin{aligned}
g(1) & =1 \\
g(n) & =4 g(n / 2)+n^{2} \text { for } n \geq 2
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=4^{k} g\left(n / 2^{k}\right)+k n^{2}
$$

Finish finding the closed form for g. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, set $n / 2^{k}=1$. Then $n=2^{k}$, so $k=\log _{2} n$. Substituting this into the above, we get:

$$
\begin{aligned}
g(n) & =4^{k} g\left(n / 2^{k}\right)+k n^{2} \\
& =4^{\log _{2} n} g(1)+\left(\log _{2} n\right) n^{2} \\
& =4^{\log _{2} n}+n^{2} \log _{2} n \\
& =4^{\log _{4} n \log _{2} 4}+n^{2} \log _{2} n \\
& =\left(4^{\log _{4} n}\right)^{\log _{2} 4}+n^{2} \log _{2} n \\
& =n^{\log _{2} 4}+n^{2} \log _{2} n \\
& =n^{2}+n^{2} \log _{2} n
\end{aligned}
$$

2. (2 points) Check the (single) box that best characterizes each item.

The Fibonacci numbers can be defined recursively by $F(0)=0, F(1)=1$, and $F(n)=F(n-1)+F(n-2)$ for $n \geq 0 \quad \square$ $n \geq 1 \quad \square$ $n \geq 2$

Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(10 points) Suppose we have a function g defined (for n a power of 2) by

$$
\begin{aligned}
g(1) & =3 \\
g(n) & =4 g(n / 2)+n \text { for } n \geq 2
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=4^{k} g\left(n / 2^{k}\right)+\sum_{p=0}^{k-1} n 2^{p}
$$

Finish finding the closed form for $g(n)$ assuming that n is a power of 2 . Show your work and simplify your answer. Recall that $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$.

Solution: To find the value of k at the base case, set $n / 2^{k}=1$. Then $n=2^{k}$, so $k=\log _{2} n$. Notice also that $4^{\log _{2} n}=4^{\log _{4} n \log _{2} 4}=n^{2}$.

Substituting this into the above, we get

$$
\begin{aligned}
g(n) & =4^{k} g\left(n / 2^{k}\right)+n \sum_{p=0}^{k-1} 2^{p} \\
& =4^{\log _{2} n} \cdot 3+n \sum_{p=0}^{\log _{2} n-1} 2^{p} \\
& =3 n^{2}+n\left(2^{\log _{2} n}-1\right) \\
& =3 n^{2}+n(n-1)=4 n^{2}-n
\end{aligned}
$$

