Name:

\qquad
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(20 points) Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
& g(0)=0 \quad g(1)=\frac{4}{3} \\
& g(n)=\frac{4}{3} g(n-1)-\frac{1}{3} g(n-2), \quad \text { for } n \geq 2
\end{aligned}
$$

Use (strong) induction to prove that $g(n)=2-\frac{2}{3^{n}}$
Solution: Proof by induction on n.
Base case(s): $n=0: 2-\frac{2}{3^{n}}=2-\frac{2}{1}=0=g(0)$ So the claim holds.
$n=1: 2-\frac{2}{3^{n}}=2-\frac{2}{3}=\frac{4}{3}=g(1)$ So the claim holds.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $g(n)=2-\frac{2}{3^{n}}$, for $n=0,1, \cdots, k-1$ for some integer $k \geq 2$.
Inductive Step:
We need to show that $g(k)=2-\frac{2}{3^{k}}$

$$
\begin{array}{rlr}
g(k) & =\frac{4}{3} g(k-1)-\frac{1}{3} g(k-2) & \text { [by the def, } k \geq 2 \text {] } \\
& =\frac{4}{3}\left(2-\frac{2}{3^{k-1}}\right)-\frac{1}{3}\left(2-\frac{2}{3^{k-2}}\right) & \text { [Inductive Hypothesis] } \\
& =\frac{8}{3}-\frac{8}{3^{k}}-\frac{2}{3}+\frac{2}{3^{k-1}} & \\
& =\frac{6}{3}-\frac{8}{3^{k}}+\frac{6}{3^{k}} & \\
& =2-\frac{2}{3^{k}} . &
\end{array}
$$

Name: \qquad
NetID:

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
(20 points) Let function $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
\begin{aligned}
& f(0)=2 \\
& f(1)=7 \\
& f(n)=f(n-1)+2 f(n-2), \text { for } n \geq 2
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=3 \cdot 2^{n}+(-1)^{n+1}$ for any natural number n.
Solution: Proof by induction on n.
Base case(s): For $n=0$, we have $3 \cdot 2^{0}+(-1)^{1}=3-1=2$ which is equal to $f(0)$. So the claim holds.

For $n=1$, we have $3 \cdot 2^{1}+(-1)^{2}=6+1=7$ which is equal to $f(1)$. So the claim holds.
Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $f(n)=3 \cdot 2^{n}+$ $(-1)^{n+1}$, for $n=0,1, \ldots, k-1$ where $k \geq 2$.

Rest of the inductive step:

$$
\begin{array}{rlr}
f(k) & =f(k-1)+2 f(k-2) & \text { by definition of } f \\
& =\left(3 \cdot 2^{k-1}+(-1)^{k}\right)+2\left(3 \cdot 2^{k-2}+(-1)^{k-1}\right) & \\
& =\left(3 \cdot 2^{k-1}+(-1)^{k}\right)+3 \cdot 2^{k-1}+2(-1)^{k-1} & \\
& =6 \cdot 2^{k-1}+(-1)^{k}-2(-1)^{k} & \\
& =3 \cdot 2^{k}-(-1)^{k} &
\end{array}
$$

So $f(k)=3 \cdot 2^{k}(-1)^{k+1}$, which is what we needed to show.

Name: \qquad

Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
(20 points) Use (strong) induction to prove that the following claim holds:

Claim : For any integer $n \geq 2$, if p_{1}, \ldots, p_{n} is a sequence of integers and $p_{1}<p_{n}$, then there is an index $j(1 \leq j<n)$ such that $p_{j}<p_{j+1}$.

Solution:

Base case(s): Proof by induction on n. At $n=2$: It's given that $p_{1}<p_{n}$. But $p_{n}=p_{2}$. So $p_{1}<p_{2}$ and so $j=1$ is the required index.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that any sequence of integers p_{1}, \ldots, p_{n} with $p_{1}<p_{n}$ has an index $j(1 \leq j<n)$ such that $p_{j}<p_{j+1}$, for $n=2, \ldots, k$.

Rest of the inductive step: Let p_{1}, \ldots, p_{k+1} be a sequence of $k+1$ integers, with $p_{1}<p_{k+1}$.
Consider p_{k} and p_{k+1}. There are two cases:
Case (1): $p_{k}<p_{k+1}$. Then the index $j=k$ works.
Case (2): $p_{k} \geq p_{k+1}$. Then we have $p_{1}<p_{k+1}$ and $p_{k+1} \leq p_{k}$. So $p_{1}<p_{k}$. So we can apply the inductive hypothesis to the shorter subsequence p_{1}, \ldots, p_{k}. That is, by the inductive hypothesis, there is an index j into the subsequence (i.e. $1 \leq j<k$) such that $p_{j}<p_{j+1}$. This (obviously) also works as an index into the longer sequence of $k+1$ integers.

In both cases, we have found an index j such that $p_{j}<p_{j+1}$, which is what we needed to find.
[Notes: it also works to remove the first element p_{1} from the sequence, with small changes to the inductive step. Your inductive step doesn't need to be quite this detailed.]

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) Suppose that $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ is defined by is defined by

$$
\begin{aligned}
& f(1)=5 \quad f(2)=-5 \\
& f(n)=4 f(n-2)-3 f(n-1), \text { for all } n \geq 3
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=2 \cdot(-4)^{n-1}+3$
Solution: Proof by induction on n.
Base case(s): For $n=1,2 \cdot(-4)^{n-1}+3=2 \cdot(-4)^{0}+3=2 \cdot 1+3=5$, which is equal to $f(1)$.
For $n=2,2 \cdot(-4)^{n-1}+3=2 \cdot(-4)^{1}+3=2 \cdot(-4)+3=-5$, which is equal to $f(2)$.
So the claim holds.
Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $f(n)=2 \cdot(-4)^{n-1}+3$, for $n=1,2, \ldots, k-1$, for some integer $k \geq 3$

Rest of the inductive step:

Using the definition of f and the inductive hypothesis, we get

$$
f(k)=4 f(k-2)-3 f(k-1)=4\left(2 \cdot(-4)^{k-3}+3\right)-3\left(2 \cdot(-4)^{k-2}+3\right)
$$

Simplifying the algebra,

$$
\begin{aligned}
4\left(2 \cdot(-4)^{k-3}+3\right)-3\left(2 \cdot(-4)^{k-2}+3\right) & =8 \cdot(-4)^{k-3}+12-6 \cdot(-4)^{k-2}-9 \\
& =-2 \cdot(-4)^{k-2}-6 \cdot(-4)^{k-2}+3 \\
& =-8 \cdot(-4)^{k-2}+3=2 \cdot(-4)^{k-1}+3
\end{aligned}
$$

So $f(k)=2 \cdot(-4)^{k-1}+3$, which is what we needed to prove.

Name:

\qquad

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(20 points) Suppose that θ is a constant (but unknown) real number. For any real number p, the angle addition formulas imply the following two equations (which you can assume without proof):

$$
\begin{align*}
\cos (\theta) \cos (p \theta) & =\cos ((p+1) \theta)+\sin (\theta) \sin (p \theta) \tag{1}\\
\cos (\theta) \cos (p \theta) & =\cos ((p-1) \theta)-\sin (\theta) \sin (p \theta) \tag{2}
\end{align*}
$$

Suppose that $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ is defined by

$$
\begin{aligned}
& f(0)=1 \quad f(1)=\cos (\theta) \\
& f(n+1)=2 \cos (\theta) f(n)-f(n-1), \text { for all } n \geq 2
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=\cos (n \theta)$ for any natural number n.
Solution: Proof by induction on n.
Base case(s): At $n=0, f(n)=f(0)=1=\cos (0)=\cos (0 \theta)=\cos (n \theta)$.
At $n=1, f(n)=f(1)=\cos \theta=\cos (1 \theta)=\cos (n \theta)$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
$f(n)=\cos (n \theta)$ for $n=0, \ldots, k$.
Rest of the inductive step: In particular, by the inductive hypothesis, $f(k)=\cos (k \theta)$ and $f(k-1)=\cos ((k-1) \theta)$.

If we set $p=k$ in equations (1) and (2), and then add them together, we get

$$
2 \cos (\theta) \cos (k \theta)=\cos ((k+1) \theta)+\cos ((k-1) \theta)
$$

So then we can compute

$$
\begin{aligned}
f(k+1) & =2 \cos (\theta) f(k)-f(k-1) \\
& =2 \cos (\theta) \cos (k \theta)-\cos ((k-1) \theta) \quad \text { (by the IH) } \\
& =\cos ((k+1) \theta)+\cos ((k-1) \theta)+\cos ((k-1) \theta) \\
& =\cos ((k+1) \theta)
\end{aligned}
$$

So $f(k+1)=\cos ((k+1) \theta)$, which is what we needed to show.

Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) A Zellig graph consists of $2 n(n \geq 1)$ nodes connected so as to form a circle. Half of the nodes have label 1 and the other half have label -1. As you move clockwise around the circle, you keep a running total of node labels. E.g. if you start at a 1 node and then pass through two -1 nodes, your running total is -1 . Use (strong) induction to prove that there is a choice of starting node for which the running total stays ≥ 0.

Hint: remove an adjacent pair of nodes.
Solution: Proof by induction on n.
Base case(s): At $n=1$, there are only two nodes. If you start at the node with label 1 , the running total stays ≥ 0.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that there is a choice of starting node for which the running total stays ≥ 0, for Zellig graphs with $2 n$ nodes, where $n=1, \ldots, k-1$.

Rest of the inductive step: Let G be a Zellig graph with $2 k$ nodes. Find a 1 node that immediately precedes a -1 (going clockewise). Remove those two nodes m and s from G to create a smaller graph H.

By the inductive hypothesis, we can find a starting node p on H such that the running total stays ≥ 0. I claim that p also works as a starting node for G. Between p and m, we see the same sequence of nodes as in H, so the total stays ≥ 0. The total increases by 1 at m and the immediately decreases by 1 at s. So it can't dip below zero in that section of the circle. Between s and returning to p, we have the same running totals as in H.

So G has a starting point for which all the running totals stay ≥ 0, which is what we needed to prove.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) (20 points) Suppose that $f: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by

$$
\begin{aligned}
& f(0)=2 \quad f(1)=5 \quad f(2)=15 \\
& f(n)=6 f(n-1)-11 f(n-2)+6 f(n-3), \text { for all } n \geq 3
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=1-2^{n}+2 \cdot 3^{n}$
Solution: Proof by induction on n.
Base case(s): At $n=0, f(0)=2$ and $1-2^{n}+2 \cdot 3^{n}=1-1+2=2$
At $n=1, f(1)=5$ and $1-2^{n}+2 \cdot 3^{n}=1-2+6=5$
At $n=2, f(2)=15$ and $1-2^{n}+2 \cdot 3^{n}=1-4+18=15$
So the claim holds at all three values.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $f(n)=1-2^{n}+2 \cdot 3^{n}$ for $n=0,1, \ldots, k-1$.
Rest of the inductive step: By the definition of f and the inductive hypothesis, we get

$$
\begin{aligned}
f(k) & =6 f(k-1)-11 f(k-2)+6 f(k-3) \\
& =6\left(1-2^{k-1}+2 \cdot 3^{k-1}\right)-11\left(1-2^{k-2}+2 \cdot 3^{k-2}\right)+6\left(1-2^{k-3}+2 \cdot 3^{k-3}\right) \\
& =(6-11+6)-\left(6 \cdot 2^{k-1}-11 \cdot 2^{k-2}+6 \cdot 2^{k-3}\right)+2\left(6 \cdot 3^{k-1}-11 \cdot 3^{k-2}+6 \cdot 3^{k-3}\right) \\
& =1-\left(12 \cdot 2^{k-2}-11 \cdot 2^{k-2}+3 \cdot 2^{k-2}\right)+2\left(18 \cdot 3^{k-2}-11 \cdot 3^{k-2}+2 \cdot 3^{k-2}\right) \\
& =1-4 \cdot 2^{k-2}+2 \cdot 9 \cdot 3^{k-2}=1-2^{k}+2 \cdot 2^{k}
\end{aligned}
$$

So $f(k)=1-2^{k}+2 \cdot 2^{k}$, which is what we needed to show.

Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) Use (strong) induction to prove that, for any integer $n \geq 8$, there are non-negative integers p and q such that $n=3 p+5 q$.

Solution: Proof by induction on n.
Base case(s): At $n=8$, we can chose $p=1$ and $q=1$. At $n=9$, we can chose $p=3$ and $q=0$. At $n=10$, we can chose $p=0$ and $q=2$. In all three cases, $n=3 p+5 q$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that there are nonnegative integers p and q such that $n=3 p+5 q$, for $n=8,9, \ldots, k-1$, where $k \geq 11$.

Rest of the inductive step: Consider $n=k$.
Notice that $k \geq 11$, so $8 \leq k-3 \leq k-1$. So $k-3$ is covered by the inductive hypothesiss. Therefore, there are non-negative integers r and q such that $k-3=3 r+5 q$.

Now, set $p=r+1$. Then $k=(k-3)+3=(3 r+5 q)+3=3(r+1)+5 q=3 p+5 q . p$ is non-negative since r is.

So there are non-negative integers p and q such that $k=3 p+5 q$, which is what we needed to prove.

