Name:

\qquad
(20 points) Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is defined by

$$
g(0)=0 \quad g(1)=\frac{4}{3}
$$

$$
g(n)=\frac{4}{3} g(n-1)-\frac{1}{3} g(n-2), \quad \text { for } n \geq 2
$$

Use (strong) induction to prove that $g(n)=2-\frac{2}{3^{n}}$
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Spring 19 Examlet 8, colored
Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) Let function $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(0)=2
$$

$$
f(1)=7
$$

$f(n)=f(n-1)+2 f(n-2)$, for $n \geq 2$

Use (strong) induction to prove that $f(n)=3 \cdot 2^{n}+(-1)^{n+1}$ for any natural number n. Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) Use (strong) induction to prove that the following claim holds:

Claim : For any integer $n \geq 2$, if p_{1}, \ldots, p_{n} is a sequence of integers and $p_{1}<p_{n}$, then there is an index $j(1 \leq j<n)$ such that $p_{j}<p_{j+1}$.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) Suppose that $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ is defined by is defined by
$f(1)=5 \quad f(2)=-5$
$f(n)=4 f(n-2)-3 f(n-1)$, for all $n \geq 3$
Use (strong) induction to prove that $f(n)=2 \cdot(-4)^{n-1}+3$
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

\qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

(20 points) Suppose that θ is a constant (but unknown) real number. For any real number p, the angle addition formulas imply the following two equations (which you can assume without proof):

$$
\begin{align*}
\cos (\theta) \cos (p \theta) & =\cos ((p+1) \theta)+\sin (\theta) \sin (p \theta) \tag{1}\\
\cos (\theta) \cos (p \theta) & =\cos ((p-1) \theta)-\sin (\theta) \sin (p \theta) \tag{2}
\end{align*}
$$

Suppose that $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ is defined by

$$
\begin{aligned}
& f(0)=1 \quad f(1)=\cos (\theta) \\
& f(n+1)=2 \cos (\theta) f(n)-f(n-1), \text { for all } n \geq 2 .
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=\cos (n \theta)$ for any natural number n.
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(20 points) A Zellig graph consists of $2 n(n \geq 1)$ nodes connected so as to form a circle. Half of the nodes have label 1 and the other half have label -1. As you move clockwise around the circle, you keep a running total of node labels. E.g. if you start at a 1 node and then pass through two -1 nodes, your running total is -1 . Use (strong) induction to prove that there is a choice of starting node for which the running total stays ≥ 0.

Hint: remove an adjacent pair of nodes.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

\qquad
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(20 points) (20 points) Suppose that $f: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by

$$
f(0)=2 \quad f(1)=5 \quad f(2)=15
$$

$$
f(n)=6 f(n-1)-11 f(n-2)+6 f(n-3), \text { for all } n \geq 3
$$

Use (strong) induction to prove that $f(n)=1-2^{n}+2 \cdot 3^{n}$
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
(20 points) Use (strong) induction to prove that, for any integer $n \geq 8$, there are non-negative integers p and q such that $n=3 p+5 q$.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

