Name:_____ NetID:_____ Lecture: Α Β Thursday Friday $\mathbf{2}$ 3 Discussion: 9 $\mathbf{10}$ $\mathbf{11}$ 121 $\mathbf{4}$ $\mathbf{5}$ 6 (20 points) Suppose that $g: \mathbb{N} \to \mathbb{R}$ is defined by $g(1) = \frac{4}{3}$ g(0) = 0 $g(n) = \frac{4}{3}g(n-1) - \frac{1}{3}g(n-2), \text{ for } n \ge 2$ Use (strong) induction to prove that $g(n) = 2 - \frac{2}{3^n}$ Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:				Le	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(20 points) L	et function $f:\mathbb{N}$	$\rightarrow \mathbb{Z}$ be defi	ined l	ру								
f(0) = 2												

- f(1) = 7
- f(n) = f(n-1) + 2f(n-2), for $n \ge 2$

Use (strong) induction to prove that $f(n) = 3 \cdot 2^n + (-1)^{n+1}$ for any natural number n. Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	-	Lecture: A					В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) Use (strong) induction to prove that the following claim holds:

Claim : For any integer $n \ge 2$, if p_1, \ldots, p_n is a sequence of integers and $p_1 < p_n$, then there is an index j $(1 \le j < n)$ such that $p_j < p_{j+1}$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(20 points) Su	uppose that $f:\mathbb{Z}$	$Z^+ \to \mathbb{Z}$ is defined	efined	by is o	defined	by						
f(1) = 5	f(2) = -5											
f(n) = 4f(n)	n-2) - 3f(n-1)), for all $n \ge 1$	≥ 3									
Use (strong) in	nduction to prove	e that $f(n)$:	$= 2 \cdot$	$(-4)^{n-1}$	$^{1} + 3$							

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) Suppose that θ is a constant (but unknown) real number. For any real number p, the angle addition formulas imply the following two equations (which you can assume without proof):

$$\cos(\theta)\cos(p\theta) = \cos((p+1)\theta) + \sin(\theta)\sin(p\theta)$$
(1)

$$\cos(\theta)\cos(p\theta) = \cos((p+1)\theta) + \sin(\theta)\sin(p\theta)$$
(1)

$$\cos(\theta)\cos(p\theta) = \cos((p-1)\theta) - \sin(\theta)\sin(p\theta)$$
(2)

Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by

 $f(0) = 1 \qquad f(1) = \cos(\theta)$

 $f(n+1) = 2\cos(\theta)f(n) - f(n-1)$, for all $n \ge 2$.

Use (strong) induction to prove that $f(n) = \cos(n\theta)$ for any natural number n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:					ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) A Zellig graph consists of 2n $(n \ge 1)$ nodes connected so as to form a circle. Half of the nodes have label 1 and the other half have label -1. As you move clockwise around the circle, you keep a running total of node labels. E.g. if you start at a 1 node and then pass through two -1 nodes, your running total is -1. Use (strong) induction to prove that there is a choice of starting node for which the running total stays ≥ 0 .

Hint: remove an adjacent pair of nodes.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Examlet 8, colored

Name:												
NetID:				$\mathrm{L}\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(20 points) (2)	20 points) Suppos	se that $f:\mathbb{N}$	$ ightarrow \mathbb{Z}$	is defi	ned by							
f(0) = 2	f(1) = 5	f(2) = 15										
f(n) = 6f(n)	n-1) - 11f(n-1)	2) + 6f(n -	3), fe	or all n	$n \ge 3$							
Use (strong) in	nduction to prove	e that $f(n)$ =	= 1 -	$2^{n}+2$	$2 \cdot 3^n$							
Proof by induc	ction on n .											
Base case(s):	:											

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:					ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) Use (strong) induction to prove that, for any integer $n \ge 8$, there are non-negative integers p and q such that n = 3p + 5q.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: