Name: \qquad
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (11 points) If G is a graph, recall that $\chi(G)$ is its chromatic number. Suppose that G is a graph with at least one edge and H is another graph with at least one edge, not connected to G. Now, pick a specific edge e from G and an edge f from H and merge the two edges, creating a combined graph T. For example, suppose that G is C_{5} and H is K_{4}. Then T might look as follows, where g marks nodes of G and h marks nodes of H.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer. Your answer should handle any choice for G and H.
2. (4 points) Check the (single) box that best characterizes each item.

$$
\begin{array}{lllllll}
\sum_{i=1}^{p-1} i & \frac{p(p-1)}{2} & \square & \frac{(p-1)^{2}}{2} & \square & \frac{p(p+1)}{2} & \square
\end{array} \frac{(p-1)(p+1)}{2} \quad \square
$$

Leal team's bridge held 100 pounds without collapsing. 100 pounds is
\qquad on how much the bridge can hold.
an upper bound on a lower bound on

exactly
not a bound on \square

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$
\begin{aligned}
& \begin{array}{l}
\text { Chromatic number of a graph } \geq 2 \quad \square \geq 3 \quad \square \quad \text { an't tell } \square \\
\text { containing a } C_{7} .
\end{array} \\
& \sum_{i=1}^{p-1} i \quad \frac{(p-1)^{2}}{2} \quad \square \quad \frac{(p-1)(p+1)}{2} \quad \square \quad \frac{p(p+1)}{2} \quad \square \quad \frac{p(p-1)}{2} \quad \square \\
& \tau \leq 1.3 \\
& \text { an upper bound on } \tau \\
& \text { a lower bound on } \tau \\
& \text { exactly } \tau \\
& \text { not a bound on } \tau
\end{aligned}
$$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of a graph $\leq 3 \square \geq 3 \quad \square \quad$ can't tell \square
containing a W_{n}.
$\sum_{i=1}^{p-1} \frac{i}{p} \quad \frac{p(p-1)}{2} \quad \square \quad \frac{p(p+1)}{2} \quad \square \quad \frac{(p+1)}{2} \quad \square \quad \frac{(p-1)}{2} \quad \square$
Putting 10 people in the canoe caused it to sink. 10 is \qquad how many people the canoe can carry.
an upper bound on a lower bound on

exactly not a bound on $\quad \square$

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of an connected acyclic graph $\leq 2 \quad \square \quad 2 \quad \square \quad$ can't tell \square with 5 nodes.
$\begin{array}{lllll}\sum_{i=0}^{k-1}(k \cdot i+2) & \left.\begin{array}{lll}\frac{k^{2}(k+1)}{2}+2 k & \square & \frac{k(k+1)}{2}+2(k-1) \\ \hline \frac{k^{2}(k-1)}{2}+2 k & \square & \frac{k(k-1)}{2}+2(k-1)\end{array} \begin{array}{|ll}\square\end{array}\right]\end{array}$
$\pi \geq 1.3$
an upper bound on $\pi \quad \square$ exactly π a lower bound on π
 not a bound on π

Name: \qquad
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of a
connected graph with nodes.
$\sum_{k=-2}^{n} k^{2} \quad \sum_{p=0}^{n+2}(p+2)^{2} \square \quad \sum_{p=0}^{n-2}(p-2)^{2} \square \quad \sum_{p=0}^{n+2}(p-2)^{2} \square \quad \sum_{p=0}^{n+2} p^{2} \square$

We have 30 tablespoons of filling. Each bun requires exactly one tablespoon of filling. 30 is how many buns we can make. on
an upper bound on
a lower bound on
\square $=2 \quad \square$
≥ 2 \square can't tell ant \square
\square exactly not a bound on

Name: \qquad
NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of a graph containing a W_{7}.
$\geq 3 \quad \square \geq 4 \quad$ can't tell \square
$\sum_{k=1}^{n} k!\quad \sum_{p=0}^{n+1}(p+1)!\square \quad \sum_{k=0}^{n+1}(k-1)!\square \quad \sum_{k=0}^{n-1}(k+1)!\square \sum_{p=0}^{n+1} k!\square$

10 people rowed across Lake Tahoe in my canoe. 10 is \qquad how many people the canoe can carry.
an upper bound on
a lower bound on
 exactly not a bound on $\quad \square$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of a graph containing a K_{n}.

$$
\sum_{k=0}^{n} k!\quad \sum_{p=1}^{n+1}(p+1)!\square \quad \sum_{k=1}^{n+1}(k-1)!\square \quad \sum_{k=1}^{n-1}(k+1)!\square \quad \sum_{p=1}^{n+1} k!\square
$$

I heated 2 liters of milk in my big pot. 2 liters is how much the pot holds.
an upper bound on a lower bound on \square exactly not a bound on \square

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (11 points) Let's define two sets as follows:

$$
\begin{gathered}
A=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}-4 x+3\right\} \\
B=\left\{\left(t+2, t^{2}-1\right): t \in \mathbb{R}\right\}
\end{gathered}
$$

Prove that $A=B$ by proving two subset inclusions.
2. (4 points) Check the (single) box that best characterizes each item.

Chromatic number of $K_{m, n}$. (Assume $m \geq 1, n \geq 1$.)

$$
\pi \leq 10
$$

can't tell \square
an upper bound on π a lower bound on π \square

not a bound on π

