Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Working directly from the definition of divides, use (strong) induction to prove the following claim:

Claim: $n^{3}+5 n$ is divisible by 6 , for all positive integers n.

Solution: Proof by induction on n.

Base case(s): At $n=1, n^{3}+5 n=6$, which is clearly divisible by 6 .

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $n^{3}+5 n$ is divisible by 6 , for $n=1,2, \ldots, k$.

Rest of the inductive step: Notice that
$(k+1)^{3}+5(k+1)=\left(k^{3}+3 k^{2}+3 k+1\right)+(5 k+5)=\left(k^{3}+5 k\right)+\left(3 k^{2}+3 k\right)+6=\left(k^{3}+5 k\right)+3 k(k+1)+6$
$\left(k^{3}+5 k\right)$ is divisible by 6 by the inductive hypothesis. $3 k(k+1)$ is divisible by 6 because one of k and $(\mathrm{k}+1)$ must be even. 6 is obviously divisible by 6 . Since $(k+1)^{3}+5(k+1)$ is the sum of these three terms, it must also be divisible by 6 , which is what we needed to show.

Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer $n, \sum_{p=1}^{n} \log \left(p^{2}\right)=2 \log (n!)$

Solution: Proof by induction on n.

Base case(s): At $n=1, \sum_{p=1}^{n} \log \left(p^{2}\right)=\log \left(1^{2}\right)=\log 1=0$. Also $2 \log (n!)=2 \log 1=2 \cdot 0=0$. So the two are equal.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{p=1}^{n} \log \left(p^{2}\right)=2 \log (n!)$. for $n=1, \ldots, k$.

Rest of the inductive step: In particular, $\sum_{p=1}^{k} \log \left(p^{2}\right)=2 \log (k!)$. Then

$$
\begin{aligned}
\sum_{p=1}^{k+1} \log \left(p^{2}\right) & =\log \left((k+1)^{2}\right)+\sum_{p=1}^{p-1} \log \left(p^{2}\right)=2 \log (k+1)+\sum_{p=1}^{k} \log \left(p^{2}\right) \\
& =2 \log (k+1)+2 \log (k!)=2(\log (k+1)+\log (k!)) \\
& =2 \log ((k+1) k!)=2 \log ((k+1)!)
\end{aligned}
$$

So $\sum_{p=1}^{k+1} \log \left(p^{2}\right)=2 \log ((k+1)!)$, which is what we needed to show.

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Let A be a constant integer. Use (strong) induction to prove the following claim. Remember that $0!=1$.

Claim: For any integer $n \geq A, \sum_{p=A}^{n} \frac{p!}{A!(p-A)!}=\frac{(n+1)!}{(A+1)!(n-A)!}$

Solution: Proof by induction on n.

Base case(s): At $n=A, \sum_{p=A}^{n} \frac{p!}{A!(p-A)!}=\frac{A!}{A!0!}=1=\frac{(A+1)!}{(A+1)!0!}=\frac{(n+1)!}{(A+1)!(n-A)!}$

Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{p=A}^{n} \frac{p!}{A!(p-A)!}=\frac{(n+1)!}{(A+1)!(n-A)!}$ is true for all $n=A, \ldots, k$.

Rest of the inductive step:

In particular, $\sum_{p=A}^{k} \frac{p!}{A!(p-A)!}=\frac{(k+1)!}{(A+1)!(k-A)!}$. So then

$$
\begin{aligned}
\sum_{p=A}^{k+1} \frac{p!}{A!(p-A)!} & =\sum_{p=A}^{k} \frac{p!}{A!(p-A)!}+\frac{(k+1)!}{A!(k+1-A)!} \\
& =\frac{(k+1)!}{(A+1)!(k-A)!}+\frac{(k+1)!}{A!(k+1-A)!} \\
& =\frac{(k+1-A)(k+1)!}{(A+1)!(k+1-A)!}+\frac{(A+1)(k+1)!}{(A+1)!(k+1-A)!} \\
& =\frac{(k+2)(k+1)!}{(A+1)!(k+1-A)!}=\frac{(k+2)!}{(A+1)!(k+1-A)!}
\end{aligned}
$$

So $\sum_{p=A}^{k+1} \frac{p!}{A!(p-A)!}=\frac{(k+2)!}{(A+1)!(k+1-A)!}$, which is what we needed to show.

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

(15 points) The operator Π is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

$$
\prod_{p=2}^{n}\left(1-\frac{1}{p^{2}}\right)=\frac{n+1}{2 n} \text { for any integer } n \geq 2
$$

Solution: Proof by induction on n.
Base case(s): At $n=2, \prod_{p=2}^{n}\left(1-\frac{1}{p^{2}}\right)=\left(1-\frac{1}{4}\right)=\frac{3}{4}$ and $\frac{n+1}{2 n}=\frac{3}{4}$, so the claim holds.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=2}^{n}\left(1-\frac{1}{p^{2}}\right)=\frac{n+1}{2 n}$ for $n=2, \ldots, k$

Rest of the inductive step: In particular, from the inductive hypothesis $\prod_{p=2}^{k}\left(1-\frac{1}{p^{2}}\right)=\frac{k+1}{2 k}$. So

$$
\begin{aligned}
\prod_{p=2}^{k+1}\left(1-\frac{1}{p^{2}}\right) & =\left(\prod_{p=2}^{k}\left(1-\frac{1}{p^{2}}\right)\right)\left(1-\frac{1}{(k+1)^{2}}\right) \\
& =\left(\frac{k+1}{2 k}\right)\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+1}{2 k}-\frac{k+1}{2 k(k+1)^{2}} \\
& =\frac{k+1}{2 k}-\frac{1}{2 k(k+1)}=\frac{(k+1)^{2}}{2 k(k+1)}-\frac{1}{2 k(k+1)} \\
& =\frac{\left.(k+1)^{2}-1\right)}{2 k(k+1)}=\frac{\left.k^{2}+2 k\right)}{2 k(k+1)}=\frac{k(k+2)}{2 k(k+1)}=\frac{k+2}{2(k+1)}
\end{aligned}
$$

So $\prod_{p=2}^{k+1}\left(1-\frac{1}{p^{2}}\right)=\frac{k+2}{2(k+1)}$, which is what we needed to show.

Name:
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Use (strong) induction to prove the following claim:

Claim: for all natural numbers $n, \sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$

Solution: Proof by induction on n.

Base case(s): At $n=0, \sum_{j=0}^{n} 2(-7)^{j}=2$ and $\frac{1-(-7)^{n+1}}{4}=\frac{1-(-7)}{4}=2$. So the claim holds at $n=0$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$ for $n=0,1, \ldots, k$.

Rest of the inductive step:
In particular $\sum_{j=0}^{k} 2(-7)^{j}=\frac{1-(-7)^{k+1}}{4}$. So then

$$
\begin{aligned}
\sum_{j=0}^{k+1} 2(-7)^{j} & =\left(\sum_{j=0}^{n} 2(-7)^{j}\right)+2(-7)^{k+1} \\
& =\frac{1-(-7)^{k+1}}{4}+2(-7)^{k+1}=\frac{1-(-7)^{k+1}+8(-7)^{k+1}}{4}=\frac{1+7(-7)^{k+1}}{4} \\
& =\frac{1-(-7)^{k+2}}{4}
\end{aligned}
$$

So $\sum_{j=0}^{k+1} 2(-7)^{j}=\frac{1-(-7)^{k+2}}{4}$, which is what we needed to show.

Name: \qquad
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer $n, \sum_{p=1}^{n} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\sqrt{n}$

Solution: Proof by induction on n.

Base case(s): At $n=1, \sum_{p=1}^{n} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\frac{1}{\sqrt{1-1}+\sqrt{1}}=\frac{1}{\sqrt{0}+\sqrt{1}}=1$ and $\sqrt{n}=\sqrt{1}=1$. So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\sqrt{n}$ for $n=1, \ldots, k$.

Rest of the inductive step: In particular, $\sum_{p=1}^{k} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\sqrt{k}$. So then

$$
\begin{aligned}
\sum_{p=1}^{k+1} \frac{1}{\sqrt{p-1}+\sqrt{p}} & =\frac{1}{\sqrt{k}+\sqrt{k+1}}+\sum_{p=1}^{k} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\frac{1}{\sqrt{k}+\sqrt{k+1}}+\sqrt{k} \\
& =\frac{\sqrt{k}-\sqrt{k+1}}{k-(k+1)}+\sqrt{k}=\frac{\sqrt{k}-\sqrt{k+1}}{-1}+\sqrt{k} \\
& =(\sqrt{k+1}-\sqrt{k})+\sqrt{k}=\sqrt{k+1}
\end{aligned}
$$

So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\sqrt{k+1}$, which is what we needed to show.

Name:
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1}$ for all positive integers n.

Solution:

Proof by induction on n.

Base case(s): $n=1$. At $n=1, \sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{1}{1(1+1)}=\frac{1}{2}$. Also $\frac{n}{n+1}=\frac{1}{2}$. So the two sides of the equation are equal.

Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1}$ for $n=1, \ldots, k$ for some integer $k \geq 1$.

Rest of the inductive step:

Consider $\sum_{j=1}^{k+1} \frac{1}{j(j+1)}$. By removing the top term of the summation and then applying the inductive hypothesis, we get

$$
\sum_{j=1}^{k+1} \frac{1}{j(j+1)}=\frac{1}{(k+1)(k+2)}+\sum_{j=1}^{k} \frac{1}{j(j+1)}=\frac{1}{(k+1)(k+2)}+\frac{k}{k+1}
$$

Adding the two fractions together:

$$
\frac{1}{(k+1)(k+2)}+\frac{k}{k+1}=\frac{1}{(k+1)(k+2)}+\frac{k(k+2)}{(k+1)(k+2)}=\frac{1+k(k+2)}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}
$$

So $\sum_{j=1}^{k+1} \frac{1}{j(j+1)}=\frac{k+1}{k+2}$, which is what we needed to show.

Name:
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Use (strong) induction and the fact that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers $n,\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$

Solution: Proof by induction on n.

Base case(s): At $n=0,\left(\sum_{i=0}^{n} i\right)^{2}=0^{2}=0=\sum_{i=0}^{n} i^{3}$. So the claim is true.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$ for $n=0,1, \ldots, k$.

Rest of the inductive step:

Starting with the lefthand side of the equation for $n=k+1$, we get

$$
\left(\sum_{i=0}^{k+1} i\right)^{2}=\left((k+1)+\sum_{i=0}^{k} i\right)^{2}=(k+1)^{2}+2(k+1) \sum_{i=0}^{k} i+\left(\sum_{i=0}^{k} i\right)^{2}
$$

By the inductive hypothesis $\left(\sum_{i=0}^{k} i\right)^{2}=\sum_{i=0}^{k} i^{3}$. Substituting this and the fact we were told to assume, we get

$$
\left(\sum_{i=0}^{k+1} i\right)^{2}=(k+1)^{2}+2(k+1) \frac{k(k+1)}{2}+\sum_{i=0}^{k} i^{3}=(k+1)^{2}+k(k+1)^{2}+\sum_{i=0}^{k} i^{3}=(k+1)^{3}+\sum_{i=0}^{k} i^{3}=\sum_{i=0}^{k+1} i^{3}
$$

So $\left(\sum_{i=0}^{k+1} i\right)^{2}=\sum_{i=0}^{k+1} i^{3}$ which is what we needed to show.

