Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Working directly from the definition of divides, use (strong) induction to prove the following claim:

Claim: $n^3 + 5n$ is divisible by 6, for all positive integers n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer n, $\sum_{p=1}^n \log(p^2) = 2\log(n!)$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	_	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Let A be a constant integer. Use (strong) induction to prove the following claim. Remember that 0! = 1.

Claim: For any integer $n \ge A$, $\sum_{p=A}^{n} \frac{p!}{A!(p-A)!} = \frac{(n+1)!}{(A+1)!(n-A)!}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:				Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

 $\prod_{p=2}^{n} (1 - \frac{1}{p^2}) = \frac{n+1}{2n} \text{ for any integer } n \ge 2.$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	-	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Use (strong) induction to prove the following claim:

Claim: for all natural numbers n, $\sum_{j=0}^{n} 2(-7)^{j} = \frac{1 - (-7)^{n+1}}{4}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer n, $\sum_{p=1}^n \frac{1}{\sqrt{p-1}+\sqrt{p}} = \sqrt{n}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Recall that $\frac{1}{a+b} = \frac{a-b}{(a-b)(a+b)} = \frac{a-b}{a^2-b^2}$.)

Name:												
NetID:				Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$ for all positive integers n.

Proof by induction on n. Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:	Le	ecture	e:	A	В							
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Use (strong) induction and the fact that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers n, $(\sum_{i=0}^{n} i)^2 = \sum_{i=0}^{n} i^3$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Start by removing the top term from the sum on the lefthand side.)