Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Working directly from the definition of divides, use (strong) induction to prove the following claim:

Claim: $n^{3}+5 n$ is divisible by 6 , for all positive integers n.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

NetID: Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) Use (strong) induction to prove the following claim.
Claim: For any positive integer $n, \sum_{p=1}^{n} \log \left(p^{2}\right)=2 \log (n!)$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Let A be a constant integer. Use (strong) induction to prove the following claim. Remember that $0!=1$.

Claim: For any integer $n \geq A, \sum_{p=A}^{n} \frac{p!}{A!(p-A)!}=\frac{(n+1)!}{(A+1)!(n-A)!}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) The operator Π is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:
$\prod_{p=2}^{n}\left(1-\frac{1}{p^{2}}\right)=\frac{n+1}{2 n}$ for any integer $n \geq 2$.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:
NetID: Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Use (strong) induction to prove the following claim:
Claim: for all natural numbers $n, \sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:

NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer $n, \sum_{p=1}^{n} \frac{1}{\sqrt{p-1}+\sqrt{p}}=\sqrt{n}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Recall that $\frac{1}{a+b}=\frac{a-b}{(a-b)(a+b)}=\frac{a-b}{a^{2}-b^{2}}$.)

Name:

NetID:
Lecture: A B
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Use (strong) induction to prove the following claim:
Claim: $\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1}$ for all positive integers n.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$
(15 points) Use (strong) induction and the fact that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers $n,\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Start by removing the top term from the sum on the lefthand side.)

