Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $g(x, y)=f(x-7) f(y)$. Prove that g is onto.
Solution: Suppose that n is an integer.
Since f is onto, there is an integer p such that $f(p)=1$. Let $x=p+7$. Then $f(x-7)=f(p)=1$. Also since f is onto, there is a natural number y such that $f(y)=n$.
Now consider the pair $(x, y) . g(x, y)=f(x-7) f(y)=1 \cdot n=n$. So (x, y) is a pre-image for n, which is what we needed to find.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.
Solution: For every element y in M, there is an element x in C such that $g(x)=y$.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ by $g(x, y)=$ $(2 f(x)+f(y), f(x)-f(y))$. Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Solution: Let (x, y) and (p, q) be elements of \mathbb{Z}^{2} and suppose that $g(x, y)=g(p, q)$.
By the definition of h, this means that $(2 f(x)+f(y), f(x)-f(y))=(2 f(p)+f(q), f(p)-f(q))$. So $2 f(x)+f(y)=2 f(p)+f(q)$ and $f(x)-f(y)=f(p)-f(q)$.
Adding these two equations, we get $3 f(x)=3 f(p)$. So $f(x)=f(p)$. Since f is one-to-one, this means that $x=p$.
Subtracting twice the second equation from the first, we get $-3 f(y)=-3 f(q)$. So $f(y)=f(q)$. Since f is one-to-one, this means that $y=q$.
Since $x=p$ and $y=q,(x, y)=(p, q)$, which is what we needed to show.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".
Solution: For every elements x and y in C, if $g(x)=g(y)$, then $x=y$

Name:

NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that A and B are sets. Suppose that $f: B \rightarrow A$ and $g: A \rightarrow B$ are functions such that $f(g(x))=x$ for every $x \in A$. Prove that f is onto.
Solution: Let m be an element of A. We need to find a pre-image for m.
Consider $n=g(m)$. n is an element of B. Furthermore, since $f(g(x))=x$ for every $x \in A$, we have $f(n)=f(g(m))=m$.
So n is a pre-image of m.
Since we can find a pre-image for an arbitrarily chosen element of A, f is onto.
2. (5 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is one-to-one but not onto. Your answer must include a specific formula.

Solution: Let $f(n)=n+1$. Then f is one-to-one, but 0 isn't in the image of f.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $g(x, y)=f(x)+2 f(y)-6$. Prove that g is onto.
Solution: Let n be an arbitrary integer.
Since f is onto, there is an integer input value y such that $f(y)=3$. Similarly, there is an integer input value x such that $f(x)=n$.
Now, consider $(x, y) . g(x, y)=f(x)+2 f(y)-6=n+2 \cdot 3-6=n$. So (x, y) is a pre-image for n, which is what we needed to find.
2. (5 points) $A=\{0,2,4,6,8,10,12, \ldots\}$, i.e. the even integers starting with 0 .
$B=\{1,4,9,16,25,36,49, \ldots\}$, i.e. perfect squares starting with 1.
Give a specific formula for a bijection $f: A \rightarrow B$. (You do not need to prove that it is a bijection.)
Solution: $f(n)=\left(\frac{n}{2}+1\right)^{2}$

Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one. Prove that $g \circ f$ is one-to-one.

Solution: Let x and y be elements of A and suppose that $g \circ f(x)=g \circ f(y)$. That is $g(f(x))=$ $g(f(y))$. Since g is one-to-one, this implies that $f(x)=f(y)$. Since f is one-to-one, this implies that $x=y$.
We've shown that $g \circ f(x)=g \circ f(y)$ implies $x=y$ for any x and y in A. So $g \circ f$ is one-to-one.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "increasing." You must use explicit quantifiers.
Solution: For all x and y in \mathbb{R}, if $x \leq y$ then $g(x) \leq g(y)$.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Let P be the set of pairs of positive integers. Suppose that $f: P \rightarrow \mathbb{R}^{2}$ is defined by $f(x, y)=\left(\frac{x}{y}, x+y\right)$. Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.
Solution: Let (x, y) and (p, q) be elements of P , i.e. pairs of positive integers. Suppose that $f(x, y)=f(p, q)$.
By the definition of f, this means that $\left(\frac{x}{y}, x+y\right)=\left(\frac{p}{q}, p+q\right)$. So $\frac{x}{y}=\frac{p}{q}$ and $x+y=p+q$.
Since $\frac{x}{y}=\frac{p}{q}, x=\frac{p y}{q}$. Substituting this into $x+y=p+q$ gives us $\frac{p y}{q}+y=p+q$. So $\frac{p y+y q}{q}=p+q$.
I.e. $\frac{y(p+q)}{q}=p+q$. So $\frac{y}{q}=1$, and therefore $y=q$.

Substituting $y=q$ into $x+y=p+q$ gives us $x+y=p+y$, so $x=p$.
Therefore $(x, y)=(p, q)$, which is what we needed to prove.
2. (5 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is onto but not one-to-one. Your answer must include a specific formula.
Solution: Let $f(n)=\lfloor n / 2\rfloor$ Then f is onto. But f isn't one-to-one because (for example) both 0 and 1 are mapped onto 0 .

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ is defined by $f(x, y)=3 x+5 y$. Prove that f is onto.

Solution: Let p be an integer. We need to find a pre-image for p.
Consider $m=(-3 p, 2 p)$.
m is an element of \mathbb{Z}^{2}. We can compute

$$
f(m)=f(-3 p, 2 p)=3(-3 p)+5(2 p)=-9 p+10 p=p
$$

So m is a pre-image of p.
Since we can find a pre-image for an arbitrarily chosen integer, f is onto.
2. (5 points) $A=\{0,1,4,9,16,25,36, \ldots\}$, i.e. perfect squares starting with 0 .
$B=\{2,4,6,8,10,12,14, \ldots\}$, i.e. the even integers starting with 2 .
Give a specific formula for a bijection $f: A \rightarrow B$. (You do not need to prove that it is a bijection.)
Solution: $\quad f(n)=2(\sqrt{n}+1)$

Name: \qquad

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Let's define the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $f(x)=\frac{4 x-1}{2 x+5} .\left(\mathbb{R}^{+}\right.$is the positive reals.) Prove that f is one to one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.
Solution: Let x and y be positive reals. Suppose that $f(x)=f(y)$. By the definition of f, this means that $\frac{4 x-1}{2 x+5}=\frac{4 y-1}{2 y+5}$.
Multiplying by the two denominators gives us $(4 x-1)(2 y+5)=(4 y-1) 2 x+5$. That is $8 x y-$ $2 y+20 x-5=8 x y-2 x+20 y-5$. So $-2 y+20 x=-2 x+20 y$. So $22 x=22 y$. And therefore $x=y$, which is what we needed to prove.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "strictly increasing." You must use explicit quantifiers.
Solution: For all x and y in \mathbb{R}, if $x<y$ then $g(x)<g(y)$.
