Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $g(x, y)=f(x-7) f(y)$. Prove that g is onto.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ by $g(x, y)=$ $(2 f(x)+f(y), f(x)-f(y))$. Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

Name:

NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that A and B are sets. Suppose that $f: B \rightarrow A$ and $g: A \rightarrow B$ are functions such that $f(g(x))=x$ for every $x \in A$. Prove that f is onto.
2. (5 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is one-to-one but not onto. Your answer must include a specific formula.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $g(x, y)=f(x)+2 f(y)-6$. Prove that g is onto.
2. (5 points) $A=\{0,2,4,6,8,10,12, \ldots\}$, i.e. the even integers starting with 0 .
$B=\{1,4,9,16,25,36,49, \ldots\}$, i.e. perfect squares starting with 1 .
Give a specific formula for a bijection $f: A \rightarrow B$. (You do not need to prove that it is a bijection.)

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one. Prove that $g \circ f$ is one-to-one.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "increasing." You must use explicit quantifiers.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Let P be the set of pairs of positive integers. Suppose that $f: P \rightarrow \mathbb{R}^{2}$ is defined by $f(x, y)=\left(\frac{x}{y}, x+y\right)$. Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.
2. (5 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is onto but not one-to-one. Your answer must include a specific formula.

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (10 points) Suppose that $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ is defined by $f(x, y)=3 x+5 y$. Prove that f is onto.
2. (5 points) $A=\{0,1,4,9,16,25,36, \ldots\}$, i.e. perfect squares starting with 0 . $B=\{2,4,6,8,10,12,14, \ldots\}$, i.e. the even integers starting with 2.
Give a specific formula for a bijection $f: A \rightarrow B$. (You do not need to prove that it is a bijection.)

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (10 points) Let's define the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $f(x)=\frac{4 x-1}{2 x+5}$. (\mathbb{R}^{+}is the positive reals.) Prove that f is one to one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "strictly increasing." You must use explicit quantifiers.
