Name: \qquad
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b contain the same number of 1's. For example, $0101 \sim 1000001$. List three members of [111].
Solution: For example, 111, 1101, and 01110.
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x \leq p$ or $y \leq q$. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution:

This relation is not antisymmetric. We have $(0,1) T(1,0)$ and $(1,0) T(0,1)$, but $(0,1) \neq(1,0)$.

Name: \qquad
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: reflexive, antisymmetric, transitive
3. (5 points) Suppose that R is a relation on the integers such that $x R y$ for all integers x and y. Is R an equivalence relation?
Solution: Yes, R is an equivalence relation. All three properties of an equivalence relation (reflexive, symmetric, transitive) are requiring that certain pairs be related (e.g. unlike antisymmetry which requires that certain pairs not be related). So they have to be true because all pairs are related.

Name: \qquad
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let's define the relation \sim on \mathbb{N}^{3} such that $(x, y, z) \sim(p, q, r)$ if and only $(x, y, z)=\alpha(p, q, r)$ for some integer α. List three members of $[(1,2,3)]$ List three elements that are related to $(1,2,3)$ in either direction.
Solution: For example $(1,2,3),(-1,-2,-3),(6,12,18)$.
3. (5 points) Suppose that R is the relation on the set of integers such that $a R b$ if and only if $|a-b| \leq 13$ Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.
Solution: No, it is not transitive. Consider $a=0, b=13, c=26$. Then $a R b$ and $b R c$. 'However, $|a-c|=26$, so $a R c$.

Name: \qquad
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let R be the relation on the integers such that $x R y$ if and only if $\lfloor x / 4\rfloor=\lfloor y / 4\rfloor$. List the values in [8].
Solution: [8] contains (only) 8, 9, 10, and 11
3. (5 points) Let T be a reflexive relation defined on the integers. Let S be the relation on the integers such that $a S b$ if and only if there is an integer k such that $a T k$ and $k T b$. Is S reflexive? (I.e. is S reflexive for any reflexive relation T ?) Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: S is always reflexive. Pick any integer $x . x T x$ because T is reflexive. If we let $k=x$, then we also have $x T k$ and $k T x$. So $x S x$.

Name: \qquad

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

Solution: Yes, this is possible. However, this must be the empty relation in which no elements are related. (No edges in the graph representation.) If we have $a R b$, then we must have $b R a$ (by symmetry) and so $a R a$ (by transitivity), which is inconsistent with the relation being irreflexive.
3. (5 points) Suppose that R is a relation on the integers such $x R y$ if and only if $x=y$. Is R a partial order?

Solution: Yes, R is a partial order. It's reflexive because elements are always related to themselves. The only way to match the hypothsis of transitive is for all three integers to be equal, which makes the conclusion true. So it's transitive. It is anti-symmetric by vacuous truth.

Name: \qquad
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.
Solution: For any $x, y \in A$, if $x R y$, then $y R x$.
3. (5 points) Let S be the relation defined on \mathbb{N} such that $a T b$ if and only if $a=b+2 k$ for some natural number k. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.
Solution: This relation is antisymmetric. Notice that k cannot be negative, so if $a T b$ then $a \leq b$. So two numbers can be related in both directions only if they are equal.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

Symmetric:

Antisymmetric:

Transitive: $\sqrt{ }$
2. (5 points) Let's define the equivalence relation \sim on \mathbb{N}^{3} such that $(x, y, z) \sim(p, q, r)$ if and only $x+y+z=p+q+r$. List three members of $[(1,2,3)]$.
Solution: The three coordinates need to be non-negative integers that sum to 6 . So some example members are $(1,2,3),(3,2,1)$, and ($3,0,3$).
3. (5 points) Suppose that R is a relation on the integers such $x R y$ if and only if $x y=1$ for all integers x and y. Is R a partial order?
Solution: No, R is not a partial order. Notice that the only relations are when $x=y=1$ or $x=y=-1$. So it's transitive and antisymmetric, but not reflexive.

Name: \qquad
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: reflexive, symmetric, transitive
3. (5 points) Suppose that \succeq is the relation between subsets of the integers such that $A \succeq B$ if and only if $A-B \neq \emptyset$. (A and B are sets of integers, so $A-B$ is a set difference.) Is \succeq transitive? Informally explain why it's true or give a concrete counter-example.
Solution: \succeq is not transitive. Consider $A=C=\{3\}$ and $B=\{4\}$. Then $A-B=\{3\}$ and $B-C=\{4\}$. So $A \succeq B$ and $B \succeq C$. But $A-C=\emptyset$, so we don't have $A \succeq C$.

