Name: \qquad
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b contain the same number of 1's. For example, $0101 \sim 1000001$. List three members of [111].
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x \leq p$ or $y \leq q$. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

Reflexive: $\quad \square$ Irreflexive: Symmetric: \square Antisymmetric: \square
Transitive: \square
2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
3. (5 points) Suppose that R is a relation on the integers such that $x R y$ for all integers x and y. Is R an equivalence relation?

Name: \qquad
NetID:
Lecture: A B
Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let's define the relation \sim on \mathbb{N}^{3} such that $(x, y, z) \sim(p, q, r)$ if and only $(x, y, z)=\alpha(p, q, r)$ for some integer α. List three members of $[(1,2,3)]$ List three elements that are related to $(1,2,3)$ in either direction.
3. (5 points) Suppose that R is the relation on the set of integers such that $a R b$ if and only if $|a-b| \leq 13$ Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Name: \qquad
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let R be the relation on the integers such that $x R y$ if and only if $\lfloor x / 4\rfloor=\lfloor y / 4\rfloor$. List the values in [8].
3. (5 points) Let T be a reflexive relation defined on the integers. Let S be the relation on the integers such that $a S b$ if and only if there is an integer k such that $a T k$ and $k T b$. Is S reflexive? (I.e. is S reflexive for any reflexive relation T ?) Informally explain why it is, or give a concrete counter-example showing that it is not.

Name:
NetID: Lecture: A B

\section*{Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.
3. (5 points) Suppose that R is a relation on the integers such $x R y$ if and only if $x=y$. Is R a partial order?

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.
3. (5 points) Let T be the relation defined on \mathbb{N} such that $a T b$ if and only if $a=b+2 k$ for some natural number k. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Name:
NetID:
Lecture: A B

\section*{Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let's define the equivalence relation \sim on \mathbb{N}^{3} such that $(x, y, z) \sim(p, q, r)$ if and only $x+y+z=p+q+r$. List three members of $[(1,2,3)]$.
3. (5 points) Suppose that R is a relation on the integers such $x R y$ if and only if $x y=1$ for all integers x and y. Is R a partial order?

Name: \qquad
NetID: Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
3. (5 points) Suppose that \succeq is the relation between subsets of the integers such that $A \succeq B$ if and only if $A-B \neq \emptyset$. (A and B are sets of integers, so $A-B$ is a set difference.) Is \succeq transitive? Informally explain why it's true or give a concrete counter-example.
