Let’s define a relation T between natural numbers follows:

aTb if and only if $a = b + 2k$, where k is a natural number

Working directly from this definition, prove that T is antisymmetric.
A closed interval of the real line can be represented as a pair \((c, r)\), where \(c\) is the center of the interval and \(r\) is its radius. Let \(X = \{(c, r) \mid c, r \in \mathbb{R}, r \ge 0\}\) be the set of closed intervals represented this way.

Now, let’s define the interval containment \(\preceq\) on \(X\) as follows

\[(c, r) \preceq (d, q) \text{ if and only if } r \le q \text{ and } |c - d| + r \le q.\]

Prove that \(\preceq\) is transitive.
Suppose that T is a relation on the integers which is transitive. Let’s define a relation R on the integers as follows:

xRy if and only if there is an integer k such that xTk and kTy.

Prove that R is transitive.
Let T be the relation defined on \mathbb{Z}^2 by

$$(x, y)T(p, q) \text{ if and only if } x < p \text{ or } (x = p \text{ and } y \leq q)$$

Prove that T is antisymmetric.
Define the relation \sim on \mathbb{Z} by

$$x \sim y \text{ if and only if } 5 \mid (3x + 7y)$$

Working directly from the definition of divides, prove that \sim is transitive.
Let $A = \{(x, y, z) \in \mathbb{Z}^3 : x \leq y \leq z\}$. Let’s define a relation R on A as follows:

$$(a, b, c)R(x, y, z) \text{ if and only if } a \leq x \text{ and } z \leq b.$$

Working directly from this definition, prove that R is antisymmetric.
Let \(A = \mathbb{Z}^+ \times \mathbb{Z}^+ \), i.e. pairs of positive integers.

Define a relation \(\gg \) on \(A \) as follows:

\[(x, y) \gg (p, q) \text{ if and only if there exists an integer } n \geq 1 \text{ such that } (x, y) = (np, nq).\]

Prove that \(\gg \) is antisymmetric.
Let \(A = \{(x, y, z) \in \mathbb{Z}^3 : x \leq y \leq z\} \). Let’s define a relation \(R \) on \(A \) as follows:

\[(a, b, c)R(x, y, z) \text{ if and only if } a \leq x \text{ and } z \leq b.\]

Working directly from this definition, prove that \(R \) is transitive.