Name:

NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Let's define a relation T between natural numbers follows: $a T b$ if and only if $a=b+2 k$, where k is a natural number

Working directly from this definition, prove that T is antisymmetric.

Name:

NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X=\{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

$$
(c, r) \preceq(d, q) \text { if and only if } r \leq q \text { and }|c-d|+r \leq q .
$$

Prove that \preceq is transitive.

Name:
NetID:
Lecture: A B
Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
Suppose that T is a relation on the integers which is transitive. Let's define a relation R on the integers as follows:
$x R y$ if and only if there is an integer k such that $x T k$ and $k T y$.

Prove that R is transitive.

Name:

NetID:
Lecture: A B
Discussion: \quad Thursday $\begin{array}{llllllllllll} & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
Let T be the relation defined on \mathbb{Z}^{2} by

$$
(x, y) T(p, q) \text { if and only if } x<p \text { or }(x=p \text { and } y \leq q)
$$

Prove that T is antisymmetric.

CS 173, Spring 19 Examlet 4, colored
Name:
NetID:
Lecture: A B

Define the relation \sim on \mathbb{Z} by
$x \sim y$ if and only if $5 \mid(3 x+7 y)$

Working directly from the definition of divides, prove that \sim is transitive.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Let $A=\left\{(x, y, z) \in \mathbb{Z}^{3}: x \leq y \leq z\right\}$. Let's define a relation R on A as follows:

$$
(a, b, c) R(x, y, z) \text { if and only if } a \leq x \text { and } z \leq b .
$$

Working directly from this definition, prove that R is antisymmetric.

Name:

NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Let $A=\mathbb{Z}^{+} \times \mathbb{Z}^{+}$, i.e. pairs of positive integers.
Define a relation \gg on A as follows:

$$
(x, y) \gg(p, q) \text { if and only if there exists an integer } n \geq 1 \text { such that }(x, y)=(n p, n q) .
$$

Prove that \gg is antisymmetric.

Name:

NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Let $A=\left\{(x, y, z) \in \mathbb{Z}^{3}: x \leq y \leq z\right\}$. Let's define a relation R on A as follows:

$$
(a, b, c) R(x, y, z) \text { if and only if } a \leq x \text { and } z \leq b .
$$

Working directly from this definition, prove that R is transitive.

