1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it’s true.

For any sets A and B, $(A \cap B) \cup (A \cap \overline{B}) = A$.

Solution: This claim is true. If x is an element of A, there are exactly two possibilities: either x is in B or x is not in B (i.e. x is in \overline{B}).

2. (4 points) Check the (single) box that best characterizes each item.

 - If $x \in A \cap B$, then $x \in A$.
 - true for all sets A and B
 - true for some sets A and B
 - false for all sets A and B

 For all positive integers n, if $n! < -10$, then $n > 8$.
 - true
 - false
 - undefined

3. (7 points) In \mathbb{Z}_7, find the value of $[3]^{37}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as $[n]$, where $0 \leq n \leq 6$.

 Solution:

1. (4 points) \(A = \{4, 5, 9\} \quad B = \{\text{arya}, \text{bran}\} \quad C = \{2, 4, 10\} \)

\[(A \cap C) \times B = \]

Solution: \(\{4\} \times B = \{(4, \text{arya}), (4, \text{bran})\}\)

\[|A \times B \times C| = \]

Solution: \(3 \times 2 \times 3 = 18\)

2. (4 points) Check the (single) box that best characterizes each item.

\[A \times A = A \]

true for all sets A \[\square\] false for all sets A \[\checkmark\]

(Assume \(A \neq \emptyset\))

true for some sets A \[\square\]

\[\emptyset \subseteq A \]

true for all sets A \[\checkmark\] true for some sets A \[\square\]

false for all sets A \[\square\]

3. (7 points) In \(\mathbb{Z}_{11}\), find the value of \([6]^{42}\). You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as \([n]\), where \(0 \leq n \leq 10\).

Solution:

\([6]^2 = [36] = [3]\)
\([6]^8 = [9]^2 = [81] = [4]\)
1. (4 points) \(M = \{ \text{cereal, toast} \} \quad N = \{ \text{milk, coffee, wine} \} \)
\[P = \{ \text{wine, beer, (coffee, ham), (milk, ham)} \} \]
\[M \times (N - P) = \]
Solution: \(M \times (N - P) = M \times \{ \text{milk, coffee} \} \)
\[= \{ (\text{cereal, milk}), (\text{cereal, coffee}), (\text{toast, milk}), (\text{toast, coffee}) \} \]
\|M \times N \times P| =
Solution: \(|M \times N \times P| = 2 \cdot 3 \cdot 4 = 24 \)

2. (4 points) Check the (single) box that best characterizes each item.

\(A \cup B = A \cap B \quad \checkmark \quad \text{true for all sets } A \text{ and } B \)
\(\quad \text{false for all sets } A \text{ and } B \quad \square \)

\(\{\emptyset\} \times \{\emptyset\} = \)
\[\emptyset \quad \square \quad \{\emptyset\} \quad \square \quad \{\emptyset, \emptyset\} \quad \square \quad \{(\emptyset, \emptyset)\} \quad \checkmark \]

3. (7 points) In \(\mathbb{Z}_{17} \), find the value of \([5]^{37} \). You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as \([n]\), where \(0 \leq n \leq 16\).

Solution:
So
1. (4 points) \(A = \{ \text{trump, rubio} \} \quad B = \{ \text{clinton, sanders} \} \)
\[C = \{ (\text{trump, clinton}), (\text{sanders, rubio}) \} \]
\[(B \times A) - C = \]
Solution: \(\{ (\text{clinton, trump}), (\text{clinton, rubio}), (\text{sanders, trump}) \} \)
\[(A \cap C) \times B = \]
Solution: \(\emptyset \times B = \emptyset \)

2. (4 points) Check the (single) box that best characterizes each item.

\[A \cap B = A \cup B \]
true for all sets \(A \) and \(B \) \(\Box \)
true for some sets \(A \) and \(B \) \(\Box \)
false for all sets \(A \) and \(B \) \(\Box \)

For all reals \(n \), if \(n^2 = 101 \),
then \(n > 11 \).
true \(\Box \)
false \(\Box \)
undefined \(\Box \)

3. (7 points) In \(\mathbb{Z}_9 \), find the value of \([4]^6 \times [5]^{20}\). You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as \([n]\), where \(0 \leq n \leq 8\).
Solution: \([5]^2 = [25] = [7]\)
\([5]^4 = [7]^2 = [49] = [4]\)
\([5]^8 = [4]^2 = [16] = [7]\)
\([5]^{16} = [7]^2 = [49] = [4]\)
\([4]^2 = [16] = [7]\)
\([4]^4 = [49] = [4]\)
1. (4 points) \(A = \{ \text{ginger, clove, nutmeg} \} \quad B = \{ \text{ginger, vanilla, pepper} \} \quad C = \{ \text{(clove, nutmeg)} \} \)

\(A \cap B = \)

Solution: \(\{ \text{ginger} \} \)

\(A \cap C = \)

Solution: \(\emptyset \)

2. (4 points) Check the (single) box that best characterizes each item.

For any sets \(A \) and \(B \), if \(x \in A - B \), then \(x \in A \).

- true \(\square \)
- false \(\square \)

\(\emptyset \subseteq A \)

- true for all sets \(A \) \(\square \)
- true for some sets \(A \) \(\square \)

- false for all sets \(A \) \(\square \)

3. (7 points) In \(\mathbb{Z}_{17} \), find the value of \([5]^{42}\). You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as \([n]\), where \(0 \leq n \leq 16 \).

Solution:

\([5]^2 = [25] = [8]\)
\([5]^4 = [8]^2 = [64] = [-4]\)
\([5]^8 = [-4]^2 = [16] = [-1]\)
\([5]^{16} = [-1]^2 = [1]\)
\([5]^{32} = [1]^2 = [1]\)

So
1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it’s true.

For any sets A and B, $A \cup (B - A) = A \cup B$.

Solution: This claim is true. If x is in A, x is clearly in both sets. So consider an x that isn’t in A. If x is in $A \cup (B - A)$ then $x \in (B - A)$, so x is in B. Going the other way, if x is in $A \cup B$ but not in A, then x is in B but not in A, so x is in $B - A$.

2. (4 points) Check the (single) box that best characterizes each item.

- Let A and B be disjoint. $|A - B| = |A| - |B|$
 true for all sets A and B
 false for all sets A and B
 true for some sets A and B
 \square

- $\{1, 2\} \cap \emptyset = \emptyset$
 \square
 $\{(1, \emptyset), (2, \emptyset)\}$
 \square
 $\{1, 2, \emptyset\}$
 \square
 $\{1, 2\}$
 \square
 undefined
 \square

3. (7 points) In \mathbb{Z}_7, find the value of $[3]^{41}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as $[n]$, where $0 \leq n \leq 6$.

Solution: $[3]^2 = [9] = [2]$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it’s true.

For any sets \(A, B, \) and \(C \), if \(A \cap B = \emptyset \) and \(B \cap C = \emptyset \) then \(A \cap C = \emptyset \).

Solution: This claim is false. Consider \(A = C = \{1\} \) and \(B = \{2\} \). Then \(A \cap B = \emptyset \) and \(B \cap C = \emptyset \), but \(A \cap C = \{1\} \neq \emptyset \).

2. (4 points) Check the (single) box that best characterizes each item.

\(|A \cup B| \leq |A| + |B|\) true for all sets \(A \) and \(B \) \(\surd\) true for some sets \(A \) and \(B \)
false for all sets \(A \) and \(B \)

\(\forall x \in \mathbb{Q}, \) if \(x^2 = 3 \), then \(x > 1000 \). true \(\surd\) false
undefined

3. (7 points) In \(\mathbb{Z}_{13} \), find the value of \([7]^{19}\). You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as \([n]\), where \(0 \leq n \leq 12\).

Solution:
\([7]^2 = [49] = [10]\)
\([7]^4 = [100] = [9]\)
\([7]^8 = [9]^2 = [81] = [3]\)
So \([7]^{19} = [6]\)
1. (4 points) \(A = \{\text{oak, apple, maple, elm}\} \quad B = \{\text{tree, leaf, oak}\} \quad C = \{(\text{oak, tree})\} \)

\[|A \times (B - C)| = \]

Solution: \((B - C) = B \). So \(|A \times (B - C)| = 4 \times 3 = 12\)

\(A \cap B = \)

Solution: \(A \cap B = \{\text{oak}\} \)

2. (4 points) Check the (single) box that best characterizes each item.

Sets \(A \) and \(B \) are disjoint

- \(A - B = B - A \)
- \(A \cap B = \{\emptyset\} \)
- \(A \cap B = \emptyset \)

\(\{1, 2\} \times \emptyset = \)

- \(\emptyset \)
- \(\{(1, \emptyset), (2, \emptyset)\} \)
- \(\{1, 2, \emptyset\} \)

\(\{0\} \times \emptyset = \)

- \(\emptyset \)
- \(\{1, 2\} \)

\(\{1, 2\} \times \emptyset = \)

- \(\emptyset \)
- \(\{(1, \emptyset), (2, \emptyset)\} \)
- \(\{1, 2, \emptyset\} \)

- undefined

3. (7 points) In \(\mathbb{Z}_{13} \), find the value of \([7]^{21}\). You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as \([n]\), where \(0 \leq n \leq 12\).

Solution: