Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and $B,(A \cap B) \cup(A \cap \bar{B})=A$.
2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cap B$, then $x \in A$. true for all sets A and B false for all sets A and B \square
true \square
\square
\square undefined \square
3. (7 points) In \mathbb{Z}_{7}, find the value of $[3]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 6$.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (4 points) $A=\{4,5,9\} \quad B=\{$ arya, bran $\} \quad C=\{2,4,10\}$
$(A \cap C) \times B=$
$|A \times B \times C|=$
2. (4 points) Check the (single) box that best characterizes each item.
$A \times A=A$
(Assume $A \neq \emptyset$)
$\emptyset \subseteq A$
true for all sets A true for some sets A \square
true for all sets A

true for some sets A
\square
false for all sets A
false for all sets A \square
3. (7 points) In \mathbb{Z}_{11}, find the value of $[6]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 10$.

Name:
NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (4 points) $M=\{$ cereal, toast $\} \quad N=\{$ milk, coffee, wine $\}$
$P=\{$ wine, beer, (coffee, ham), (milk, ham) $\}$
$M \times(N-P)=$
$|M \times N \times P|=$
2. (4 points) Check the (single) box that best characterizes each item.

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

true for all sets A and B false for all sets A and B

\square
\square

3. (7 points) In \mathbb{Z}_{17}, find the value of $[5]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 16$.

Name:
NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (4 points) $A=\{$ trump, rubio $\} \quad B=\{$ clinton, sanders $\}$
$C=\{$ (trump, clinton), (sanders, rubio) $\}$
$(B \times A)-C=$
$(A \cap C) \times B=$
2. (4 points) Check the (single) box that best characterizes each item.

$$
A \cap B=A \cup B
$$

true for all sets A and B
false for all sets A and B \square true for some sets A and B \square

For all reals n, if $n^{2}=101$, then $n>11$. true

\square undefined \square
3. (7 points) In \mathbb{Z}_{9}, find the value of $[4]^{6} \times[5]^{20}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 8$.

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (4 points) $A=\{$ ginger, clove, nutmeg $\} \quad B=\{$ ginger, vanilla, pepper $\} \quad C=\{$ (clove, nutmeg) $\}$ $A \cap B=$
$A \cap C=$
2. (4 points) Check the (single) box that best characterizes each item.

For any sets A and B, if $x \in A-B$, then $x \in A$.
true

$\{\emptyset\} \subseteq A$

true for some sets A \square
3. (7 points) In \mathbb{Z}_{17}, find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 16$.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and $B, A \cup(B-A)=A \cup B$.
2. (4 points) Check the (single) box that best characterizes each item.
$\begin{array}{llll}\text { Let } A \text { and } B \text { be disjoint. } & \text { true for all sets } \mathrm{A} \text { and } \mathrm{B} & \square & \square \\ |A-B|=|A|-|B| & \text { false for all sets } \mathrm{A} \text { and } \mathrm{B} & \square & \\ & & \end{array}$
$\{1,2\} \cap \emptyset=$

3. (7 points) In \mathbb{Z}_{7}, find the value of $[3]^{41}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 6$.

Name: \qquad
NetID: Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \cap B=\emptyset$ and $B \cap C=\emptyset$ then $A \cap C=\emptyset$.
2. (4 points) Check the (single) box that best characterizes each item.
$|A \cup B| \leq|A|+|B|$
true for all sets A and B false for all sets A and B \square true for some sets A and B \square
$\forall x \in \mathbb{Q}$, if $x^{2}=3$, then $x>1000$. \square false \square undefined \square
3. (7 points) In \mathbb{Z}_{13}, find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 12$.

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (4 points) $A=\{$ oak, apple, maple, elm $\} \quad B=\{$ tree, leaf, oak $\} \quad C=\{($ oak, tree $)\}$ $|A \times(B-C)|=$
$A \cap B=$
2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint

$$
\begin{array}{llll}
A-B=B-A & \square & A=\bar{B} & \square \\
A \cap B=\{\emptyset\} & \square & A \cap B=\emptyset & \square
\end{array}
$$

$\{1,2\} \times \emptyset=$

3. (7 points) In \mathbb{Z}_{13}, find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 12$.

